VOLVER

Share

Investigadores cordobeses diseñan una ‘app’ para identificar variedades de olivo desde fotos de huesos de aceituna

El grupo Ucolivo de la Universidad de Córdoba, dentro del proyecto europeo GEN4OLIVE, participa en el desarrollo de una red neuronal entrenada con la mayor base de datos fotográfica de endocarpos de olivo. Ha contado con la participación de bancos de germoplasma de olivo de Marruecos, Grecia, Italia y Turquía para reunir más de 150.000 fotos de 133 variedades de olivo de la cuenca mediterránea.

Fuente: UCC+i Universidad de Córdoba


Córdoba |
30 de enero de 2024

El desarrollo de una herramienta capaz de identificar variedades de olivo a partir de fotos del hueso de la aceituna es el objetivo último de ‘OliVaR’, una red neuronal entrenada con la mayor base de datos fotográfica de endocarpos de frutos de olivo, que ha sido generada por los socios del proyecto europeo GEN4OLIVE.

El desarrollo de esta ‘app’ ha sido posible gracias a la labor de catalogación y documentación de cinco bancos de germoplasma de distintos países y a los avances en sistemas de inteligencia artificial. Igualmente, la Universidad de Córdoba ha jugado un papel fundamental, al ser el centro que más información ha aportado con datos de 63 variedades procedentes de su banco de germoplasma.

Los investigadores Hristofor Miho y Conchi Muñoz Díez.

La iniciativa, que se enmarca en el proyecto europeo GEN4OLIVE de mejora del olivo, coordinado por el grupo Ucolivo de la Unidad de Excelencia María de Maeztu – Departamento de Agronomía (DAUCO), ha contado con la participación de bancos de germoplasma de olivo de Marruecos, Grecia, Italia y Turquía para reunir más de 150.000 fotos de 133 variedades de olivo de la cuenca mediterránea. El departamento de Informática de la Universidad La Sapienza de Roma ha sido el encargado de recopilar la información y crear el algoritmo para esta herramienta, que propone un nuevo enfoque para identificar variedades y automatiza el proceso tradicional de clasificación morfológica.

Así lo explican los investigadores Hristofor Miho y Concepción Muñoz Díez, que inciden además en la precisión que ha demostrado el modelo, en torno a un 90% de eficacia. “Se trata de un sistema de aprendizaje mediante ensayo y error, basado en ‘machine learning’, en el que entrenamos a la máquina para que aprenda a través de sus propios fallos”, afirman. Los investigadores explican que cuantas más imágenes formen parte de la base de datos, mayor eficacia tendrá el sistema. Las entidades que participan en el proyecto han acordado protocolos muy estrictos para unificar sus metodologías de trabajo y generar imágenes que permitan la optimización del algoritmo.

El resultado es una inteligencia artificial que ha demostrado ser capaz de detectar detalles morfológicos que incluso escapan al ojo humano. Después de tratar los datos, arroja una relación de las posibles variedades que tienen distintos grados de compatibilidad con la muestra fotografiada. Este sistema de ‘machine learning’ será la base de una aplicación que va a permitir a agricultores o viveristas identificar de manera fácil y rápida la variedad de olivo con la que trabajan. Desde Ucolivo aseguran que, al ponerla a disposición de todo el sector como una herramienta pública y gratuita, contribuirá además “a avanzar en el conocimiento general de todas las variedades de olivo existentes”.

Referencia:

Hristofor Miho; Giulio Pagnotta; Dorjan Hitaj; Fabio De Gaspari; Luigi Vincenzo Mancini; Georgios Koubouris; Gianluca Godino; Mehmet Hakan; Concepción Muñoz Diez. ‘OliVaR: Improving olive variety recognition using deep neural networks’, Computers and Electronics in Agriculture, 216. Received August 2023; Received in revised form November 2023; Accepted December 2023. https://doi.org/10.1016/j.compag.2023.108530


Share

Últimas publicaciones

La Fundación Descubre llenará de ciencia el verano en Andalucía
Andalucía | 23 de mayo de 2024

Abierta la convocatoria para participar en la cuarta edición del programa de actividades estivales `Ciencia al Fresquito 365. ¡Llegó el verano!´. Las acciones se llevarán a cabo del 1 de julio al 30 de septiembre.

Sigue leyendo
Un proyecto de ciencia ciudadana diseña una guía doméstica para medir la calidad de los suelos
Andalucía | 22 de mayo de 2024

Investigadoras de la Universidad de Sevilla lideran esta iniciativa donde alumnado del IES Virgen de Valme (Dos Hermanas) y la asociación Enredaos con la Tierra (La Puebla del Río) desarrollarán un método destinado a público no experto para evaluar la biodiversidad y capacidad de descomposición de diferentes terrenos. Esta iniciativa forma parte del proyecto ‘Andalucía + ciencia ciudadana’, impulsado por la Consejería de Universidad, Investigación e Innovación y coordinado por Fundación Descubre y la Universidad Pablo de Olavide, que pretende potenciar la utilización de este abordaje científico participativo entre distintos agentes de la región.

Sigue leyendo
Las características del hábitat determinan la presencia de parásitos de la malaria aviar en mosquitos
Sevilla | 22 de mayo de 2024

Un estudio liderado por la Estación Biológica de Doñana (EBD-CSIC) señala que la presencia de estos parásitos en mosquitos es mayor a medida que aumenta la distancia a marismas y ríos. Los resultados, obtenidos tras analizar más de 16.000 mosquitos, muestran una mayor riqueza de linajes genéticos de parásitos de la gripe aviar en zonas naturales frente a las rurales.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido