VOLVER

Share

La inteligencia artificial ayuda a predecir las alteraciones metabólicas en niños con obesidad

La aplicación de esta herramienta, desarrollada por la Universidad de Granada, en entornos hospitalarios puede permitir la detección temprana de riesgos metabólicos. El estudio se ha desarrollado en el Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’ del CIBM, en el Parque Tecnológico de la Salud de Granada, y cuenta con la colaboración del Instituto de Investigación Biosanitaria.

Fuente: Universidad de Granada


Granada |
15 de noviembre de 2024

Científicos de la UGR han desarrollado un innovador modelo de inteligencia artificial (IA) explicable, capaz de predecir el riesgo de alteraciones metabólicas en niños con obesidad. En este avance participan investigadores del Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’ del Centro de Investigación Biomédica (CIBM UGR), del Instituto de Investigación Biosanitaria (ibs.GRANADA) y del Instituto Andaluz Interuniversitario en Data Science and Computational Intelligence (DaSCI).

Este modelo utiliza datos epigenéticos y clínicos para estimar el riesgo de complicaciones metabólicas que podrían surgir en los próximos años. Aunque el modelo ofrece una alta tasa de acierto en sus predicciones, su complejidad inicial dificulta la interpretación directa de los resultados. Por ello, los investigadores han implementado técnicas avanzadas para entender cómo el modelo analiza las variables proporcionadas y realiza sus estimaciones.

Científicos de la Universidad de Granada que han participado en este proyecto.

La investigación, pionera en el ámbito de la medicina personalizada, combina marcadores clásicos como el Índice de Masa Corporal (IMC) y los niveles de adipoquinas (leptina y adiponectina) con nuevos marcadores epigéneticos en genes clave: HDAC4PTPRN2MATN2RASGRF1 y EBF1.

Los hallazgos de este estudio revelan que los niños que experimentan alteraciones metabólicas durante el desarrollo puberal presentan patrones clínicos y epigenéticos distintos en la etapa prepúber. La aplicación de esta herramienta en entornos hospitalarios podría permitir la detección temprana de riesgos metabólicos, facilitando intervenciones farmacológicas o ajustes en el estilo de vida para prevenir el desarrollo de enfermedades metabólicas. Esto no solo puede reducir las comorbilidades asociadas con la obesidad, sino también disminuir el coste para la sanidad pública. Aunque la aplicación de IA en la medicina puede parecer futurista, este avance acerca la inteligencia artificial a la práctica clínica, promoviendo un progreso hacia una medicina de precisión.

El estudio se ha desarrollado en el Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’ del CIBM, en el Parque Tecnológico de la Salud de Granada, y cuenta con la colaboración del Instituto de Investigación Biosanitaria (ibs.GRANADA) y de redes científicas como la Red ‘CIBERobn’, del Instituto de Salud Carlos III, y la Red de Investigación Traslacional de Pubertad (RED2022-134687-T).

Publicado recientemente en la revista Artificial Intelligence in Medicine, este trabajo también cuenta con la colaboración de grupos clínicos de otros institutos de investigación sanitaria, como el dirigido por la doctora Leis, del IDIS de Santiago de Compostela, y la doctora Bueno, del IIS de Aragón, quienes han facilitado el reclutamiento de los niños participantes en el estudio. El desarrollo de esta investigación ha sido posible gracias a la financiación de proyectos del Fondo de Investigación Sanitaria (FIS) del Instituto de Salud Carlos III, cofinanciados por la Unión Europea y los fondos FEDER -una manera de hacer Europa-, y del proyecto Europeo EprObes “Preventing lifetime obesity by early risk-factor identification, prognosis and intervention”.

Los resultados ofrecen nuevas perspectivas en medicina traslacional y personalizada, destacando la importancia de identificar tempranamente a los niños con alto riesgo de complicaciones metabólicas. En particular, el descubrimiento de nuevos biomarcadores como HDAC4 podría jugar un papel crucial en la prevención de enfermedades y en el desarrollo de enfoques terapéuticos innovadores.

Referencia:

Torres-Martos, Á., Anguita-Ruiz, A., Bustos-Aibar, M., Ramírez-Mena, A., Arteaga, M., Bueno, G., Leis, R., Aguilera, C. M., Alcalá, R., & Alcalá-Fdez, J. (2024). ‘Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study’. Artificial Intelligence in Medicine, 156, 102962.


Share

Últimas publicaciones

¿Qué es la ciencia?
Andalucía | 10 de noviembre de 2025

La ciencia, esa palabra que resulta tan común y a la vez tan compleja. Se trata de uno de los pilares fundamentales del mundo moderno, gracias al cual se ha dado respuesta a innumerables incógnitas y se ha moldeado el curso de la historia humana. El científico español Severo Ochoa ya lo decía: “la ciencia siempre vale la pena, porque sus descubrimientos, tarde o temprano, siempre se aplican”. La comprensión de la gravedad que sostiene los planetas en sus órbitas o la creación de vacunas que han salvado millones de vidas, son solo algunos de los hallazgos con los que la ciencia ha guiado nuestra historia hacia el progreso. ¿Quieres entender un poco más, y mejor, qué es realmente la ciencia?

Sigue leyendo
Identifican dos moléculas que controlan la regeneración celular del corazón
Jaén | 09 de noviembre de 2025

Un equipo de investigación de la Universidad de Jaén ha definido el papel de dos reguladores del proceso por el que se forma el corazón. Este descubrimiento contribuye a su comprensión y plantea posibles aplicaciones futuras en medicina regenerativa, como la reparación del daño provocado tras un infarto.

Sigue leyendo
El mayor mapa del cerebro en desarrollo revela las fases en las que se originan los trastornos neurológicos
Internacional | 05 de noviembre de 2025

Un consorcio internacional ha elaborado los primeros atlas celulares que reconstruyen cómo se forma y madura este órgano desde el ratón hasta el ser humano. Un total de 12 estudios, publicados en Nature, describen cómo los tipos de células nerviosas emergen y se diversifican en oleadas, lo que permitirá identificar las etapas críticas en las que se gestan enfermedades como el autismo o la esquizofrenia.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido