VOLVER

Share

La inteligencia artificial ayuda a predecir las alteraciones metabólicas en niños con obesidad

La aplicación de esta herramienta, desarrollada por la Universidad de Granada, en entornos hospitalarios puede permitir la detección temprana de riesgos metabólicos. El estudio se ha desarrollado en el Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’ del CIBM, en el Parque Tecnológico de la Salud de Granada, y cuenta con la colaboración del Instituto de Investigación Biosanitaria.

Fuente: Universidad de Granada


Granada |
15 de noviembre de 2024

Científicos de la UGR han desarrollado un innovador modelo de inteligencia artificial (IA) explicable, capaz de predecir el riesgo de alteraciones metabólicas en niños con obesidad. En este avance participan investigadores del Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’ del Centro de Investigación Biomédica (CIBM UGR), del Instituto de Investigación Biosanitaria (ibs.GRANADA) y del Instituto Andaluz Interuniversitario en Data Science and Computational Intelligence (DaSCI).

Este modelo utiliza datos epigenéticos y clínicos para estimar el riesgo de complicaciones metabólicas que podrían surgir en los próximos años. Aunque el modelo ofrece una alta tasa de acierto en sus predicciones, su complejidad inicial dificulta la interpretación directa de los resultados. Por ello, los investigadores han implementado técnicas avanzadas para entender cómo el modelo analiza las variables proporcionadas y realiza sus estimaciones.

Científicos de la Universidad de Granada que han participado en este proyecto.

La investigación, pionera en el ámbito de la medicina personalizada, combina marcadores clásicos como el Índice de Masa Corporal (IMC) y los niveles de adipoquinas (leptina y adiponectina) con nuevos marcadores epigéneticos en genes clave: HDAC4PTPRN2MATN2RASGRF1 y EBF1.

Los hallazgos de este estudio revelan que los niños que experimentan alteraciones metabólicas durante el desarrollo puberal presentan patrones clínicos y epigenéticos distintos en la etapa prepúber. La aplicación de esta herramienta en entornos hospitalarios podría permitir la detección temprana de riesgos metabólicos, facilitando intervenciones farmacológicas o ajustes en el estilo de vida para prevenir el desarrollo de enfermedades metabólicas. Esto no solo puede reducir las comorbilidades asociadas con la obesidad, sino también disminuir el coste para la sanidad pública. Aunque la aplicación de IA en la medicina puede parecer futurista, este avance acerca la inteligencia artificial a la práctica clínica, promoviendo un progreso hacia una medicina de precisión.

El estudio se ha desarrollado en el Instituto de Nutrición y Tecnología de los Alimentos ‘José Mataix’ del CIBM, en el Parque Tecnológico de la Salud de Granada, y cuenta con la colaboración del Instituto de Investigación Biosanitaria (ibs.GRANADA) y de redes científicas como la Red ‘CIBERobn’, del Instituto de Salud Carlos III, y la Red de Investigación Traslacional de Pubertad (RED2022-134687-T).

Publicado recientemente en la revista Artificial Intelligence in Medicine, este trabajo también cuenta con la colaboración de grupos clínicos de otros institutos de investigación sanitaria, como el dirigido por la doctora Leis, del IDIS de Santiago de Compostela, y la doctora Bueno, del IIS de Aragón, quienes han facilitado el reclutamiento de los niños participantes en el estudio. El desarrollo de esta investigación ha sido posible gracias a la financiación de proyectos del Fondo de Investigación Sanitaria (FIS) del Instituto de Salud Carlos III, cofinanciados por la Unión Europea y los fondos FEDER -una manera de hacer Europa-, y del proyecto Europeo EprObes “Preventing lifetime obesity by early risk-factor identification, prognosis and intervention”.

Los resultados ofrecen nuevas perspectivas en medicina traslacional y personalizada, destacando la importancia de identificar tempranamente a los niños con alto riesgo de complicaciones metabólicas. En particular, el descubrimiento de nuevos biomarcadores como HDAC4 podría jugar un papel crucial en la prevención de enfermedades y en el desarrollo de enfoques terapéuticos innovadores.

Referencia:

Torres-Martos, Á., Anguita-Ruiz, A., Bustos-Aibar, M., Ramírez-Mena, A., Arteaga, M., Bueno, G., Leis, R., Aguilera, C. M., Alcalá, R., & Alcalá-Fdez, J. (2024). ‘Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study’. Artificial Intelligence in Medicine, 156, 102962.


Share

Últimas publicaciones

Descubre celebra la Semana Mundial del Espacio con tres ‘Cafés con Ciencia’ para despertar vocaciones científicas
Sevilla | 07 de octubre de 2025

La Fundación Descubre y Sevilla Tech Park organizan estos encuentros donde tres investigadores andaluces cuentan su experiencia científica a un grupo de estudiantes del IES Ramón Carande y del IES Heliópolis mientras desayunan y charlan sobre su trabajo y otras curiosidades. Esta iniciativa se suma a las actividades que se celebran hasta el 10 de octubre en el marco de la Semana Mundial del Espacio 2025 (World Space Week, WSW).

Sigue leyendo
Sevilla lidera la Semana Mundial del Espacio 2025 con más de 40 actividades sobre el espacio
Sevilla | 03 de octubre de 2025

Sevilla se convierte, un año más, en la capital española del espacio con el arranque oficial de la Semana Mundial del Espacio 2025 – World Space Week, que se celebrará del 4 al 10 de octubre. El programa de actividades incluye propuestas tan variadas como talleres de astronomía, exposiciones, conferencias, charlas y hasta plantadas de telescopios, entre otras.

Sigue leyendo
Investigadores del CSIC descubren el primer ejemplo de vocalización animal que combina instinto y aprendizaje
Sevilla | 03 de octubre de 2025

Un equipo internacional liderado por la EBD-CSIC ha identificado una vocalización similar en más de 20 especies de aves de todo el mundo. Los resultados, publicados en ‘Nature Ecology and Evolution’, cuestionan la tradicional división entre la comunicación animal y el lenguaje humano.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido