VOLVER

Share

La UCO participa en un proyecto para desarrollar una IA más clara en la predicción en energías renovables y salud

El proyecto NEXO, en el que también participa un grupo de investigación de la Universidad de Alcalá, utiliza aprendizaje automático y redes neuronales artificiales para desarrollar algoritmos aplicables en medicina, meteorología y energía. En concreto, se centra en la predicción de disponibilidad de recursos energéticos, de condiciones meteorológicas y de la probabilidad de supervivencia en donación de órganos y en lista de espera para trasplante.

Fuente: Universidad de Córdoba


Córdoba |
16 de junio de 2025

El proyecto de investigación NEXO, en el que colaboran los grupos AYRNA de la Universidad de Córdoba y GHEODE de la Universidad de Alcalá, busca desarrollar una Inteligencia Artificial (IA) más interpretable y comprensible para las personas expertas y que al mismo tiempo ayude en la resolución de problemas del mundo real. En concreto, se centra en la predicción de disponibilidad de recursos energéticos, de condiciones meteorológicas y de la probabilidad de supervivencia en donación de órganos y en lista de espera para trasplante.

El equipo investigador del proyecto NEXO.

En estos tres campos de la medicina, la meteorología y la energía es importante comprender cómo se llega a determinadas decisiones, por lo que el proyecto busca desarrollar lo que se conoce como Inteligencia Artificial Explicable. Esta técnica tiene por objetivo desarrollar modelos precisos, pero al mismo tiempo acompañados de explicaciones claras e interpretables acerca de cómo estos modelos obtienen los resultados para los que fueron desarrollados, dejando a un lado las denominadas “cajas negras” de la IA, esto es, el desconocimiento de como un modelo realiza una determinada predicción.

A través del aprendizaje automático, en el que el propio sistema computacional aprende mediante un entrenamiento previo, el equipo trabajará hasta 2027 con modelos de redes neuronales artificiales, un tipo de modelo que se inspira en la forma en que interactúan y se organizan las neuronas de nuestro cerebro, y con clasificación ordinal, la cual permite abordar problemas cuyas clases a predecir presentan un orden natural.

Así, el equipo del proyecto NEXO empleará el aprendizaje automático y las redes neuronales artificiales para desarrollar modelos de clasificación ordinal que sean explicables y transparentes, y, en línea con proyectos anteriores (como ORCA-DEEP o Hamlet), ayudar a realizar mejores predicciones en tres áreas. La primera de ellas es la energía renovable, clave en los próximos años para abandonar el uso de los combustibles fósiles, pero que cuenta con la desventaja de ser irregular ya que no siempre hace sol o no siempre sopla el viento. La aplicación de los modelos desarrollados permitirá la predicción de la disponibilidad de energía eólica, solar, undimotriz o de olas.

Relacionado con las energías renovables se encuentra la segunda de las aplicaciones: la climatología. Se busca conocer no solo la posibilidad de que ocurran eventos climáticos extremos como olas de calor o sequías, sino también la influencia que estos pueden tener en las energías verdes ya que, por ejemplo, una velocidad de viento extrema puede romper las turbinas eólicas o una velocidad de viento baja puede hacer innecesario activarlas.

Por último, el proyecto NEXO aplicará las redes neuronales artificiales en el área/ámbito del trasplante de hígado, tanto para estimar la probabilidad de supervivencia del órgano en el emparejamiento entre donante-receptor, como para evitar el sesgo de género en las listas de espera de los receptores, y en el/la cual ya están trabajando con el sistema de priorización GEMA.

Referencia:

PID2023-150663NB-C22. Título: “Nuevos modelos EXplicables en clasificación Ordinal (NEXO): aplicaciones a energías renovables y biomedicina”. Entidad financiadora: MCIU. Investigadores principales: P.A. Gutiérrez y J.C. Fernández (UCO). Fechas: 01/09/2024-31/08/2027. Financiación: 137.700€.


Share

Últimas publicaciones

Nueva diana terapéutica para recuperar la capacidad locomotora tras una lesión medular
Sevilla | 17 de julio de 2025

Investigadores de la Universidad Pablo de Olavide colaboran en un estudio pionero liderado por el Centro de Investigación Príncipe Felipe que acelera la recuperación en animales tras una lesión medular y que tiene su base en la molécula AMPc. 

Sigue leyendo
Investigadores desarrollan compuestos con potencial terapéutico contra el cáncer de mama tripe negativo
Granada | 16 de julio de 2025

El estudio, publicado en la revista Bioorganic Chemistry, identifica moléculas capaces de bloquear una interacción clave en la progresión de este tipo de tumor. La investigación se ha centrado en el cáncer de mama triple negativo, un subtipo que no responde a los tratamientos hormonales convencionales ni a terapias dirigidas a otros receptores habituales, lo que limita gravemente las opciones terapéuticas.

Sigue leyendo
Un estudio explica la paradoja del Mediterráneo, un mar vacío y lleno a la vez hace más de 5 millones de años
Almería | 16 de julio de 2025

Investigadores del CSIC señalan que los cambios climáticos y el aporte de agua desde ríos y lagos explicarían los datos que muestran una cuenca marina casi vacía y, al mismo tiempo, llena de agua a finales del Mioceno.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido