VOLVER

Share

Las microalgas revelan las estrategias de defensa de las plantas contra el exceso de energía solar

Conocer mejor este sistema fundamental para la vida de los organismos fotosintéticos es el objetivo de UNREDE, proyecto coordinado por el catedrático de Bioquímica y Biología Molecular de la Universidad de Córdoba Emilio Fernández y en el que también participa el investigador Emanuel Sanz-Luque. El proyecto se ha centrado en las Chlamydomonasreinhardtii, microalga unicelular que crece en un par de días, puede cultivarse en un tubo de ensayo y es relativamente fácil de modificar genéticamente.

Fuente: Universidad de Córdoba


Córdoba |
05 de diciembre de 2019

La fotosíntesis es uno de los procesos bioquímicos más importantes del planeta. Tanto es así, que todos los seres vivos dependen en cierta medida de este mecanismo. La vida en la tierra se basa, precisamente, en este proceso llevado a cabo por plantas, algas y bacterias mediante el cual convierten agua y dióxido de carbono en moléculas orgánicas utilizando la energía de la luz solar. Pero ¿qué ocurre cuando la energía lumínica absorbida por el organismo es tan elevada que supera incluso la capacidad de la maquinaria fotosintética? Todo exceso, al igual que en otros muchos ámbitos de la vida, es perjudicial. La luz del Sol es fundamental, pero en su justa medida.

El proyecto se ha centrado en las Chlamydomonasreinhardtii, un tipo de microalga unicelular que crece en un par de días, puede cultivarse en tu tubo de ensayo y es relativamente fácil de modificar genéticamente.

En condiciones de luz intensa, las células de las plantas se degradan hasta el punto de amenazar su propia supervivencia. Se produce lo que en la literatura científica se conoce como especies reactivas de oxígeno: moléculas inestables y altamente reactivas capaces de alterar proteínas y características importantes para la vida del organismo.

La evolución, no obstante, ha llevado a los organismos fotosintéticos a plantar cara a este exceso de radiación a través de un mecanismo denominado apagamiento no fotoquímico: un sistema que desencadenan estos seres vivos cuando se ven expuestos a demasiada energía solar mediante el cual modulan la captación de luz. De esta forma, protegen la integridad de sus células y son capaces de sobrevivir.

En algas, se sabe que ciertas proteínas catalizan este proceso, pero su función y regulación son poco conocidas hasta la fecha. Precisamente, conocer mejor este sistema fundamental para la vida de los organismos fotosintéticos es el objetivo principal del proyecto de investigación UNREDE, un proyecto coordinado por el catedrático de Bioquímica y Biología Molecular de la Universidad de Córdoba Emilio Fernández y en el que también participa el investigador Emanuel Sanz-Luque, que realiza una estancia en el laboratorio el Profesor Arthur Grossman de la Universidad de Stanford (USA).

Emilio Fernández, investigador principal del proyecto.

Para ello, el proyecto se ha centrado en las Chlamydomonasreinhardtii, un tipo de microalga unicelular que crece en un par de días, puede cultivarse en tu tubo de ensayo y es relativamente fácil de modificar genéticamente, motivo por el cual se utiliza como organismo modelo en investigación.

Precisamente, en este organismo se han identificado dos proteínas concretas implicadas en el mecanismo de protección frente al exceso de luz solar. “Ahora, mediante el estudio y la modificación de estas proteínas, podemos ver qué implicación tienen en el proceso del apagamiento del exceso de radiación”, destaca el investigador Emilio Fernández.

El proyecto concluirá en 2021, por lo que las principales conclusiones están por llegar a lo largo los dos próximos años. Los resultados, no obstante, podrían arrojar pistas importantes sobre cómo se comportarán los organismos fotosintéticos ante los cambios de temperatura y niveles de dióxido de carbono atmosférico. Además, también podrían tener un impacto en las estrategias científicas para mejorar la eficiencia fotosintética de las plantas y su tolerancia a las condiciones adversas.

“Para evitar que las plantas se mueran hay que conocer los mecanismos por los cuales se mueren”, subraya el investigador Emilio Fernández. La meta, por tanto, es ayudar a estos organismos a que sobrevivan en las condiciones menos favorables que puedan sobrevenir en el futuro, como, por ejemplo, aumento del dióxido de carbono, situaciones de mucha salinidad o ausencia de nutrientes.


Share

Últimas publicaciones

Avances en las enfermedades mitocondriales gracias al análisis de nuevas variantes génicas
Sevilla | 17 de julio de 2024

Un estudio del CABD, liderado por el catedrático de la Universidad Pablo de Olavide Carlos Santos Ocaña, identifica nuevas variantes genéticas del gen COQ7 y su relación con la deficiencia de Coenzima Q10 en pacientes pediátricos. La investigación ha distinguido claves genéticas que pueden mejorar diagnóstico y tratamiento de enfermedades mitocondriales.

Sigue leyendo
Un estudio compara el sistema más eficaz para gestionar el consumo de agua en agricultura
Córdoba | 16 de julio de 2024

A partir de un modelo de programación matemática, el estudio realizado por el grupo WEARE de la Universidad de Córdoba, pone de manifiesto que la asignación proporcional de agua, y no el impuesto adicional al recurso, es más eficaz desde el punto de vista de quienes se dedican a la agricultura.

Sigue leyendo
Astronomía, arqueogastronomía y talleres ocupan la agenda de Ciencia al Fresquito 365
Andalucía | 15 de julio de 2024

El proyecto reúne esta semana siete actividades en municipios de Cádiz y Sevilla. El programa de la Fundación Descubre y la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, cuenta con la financiación de la Fundación Española para la Ciencia y la Tecnología.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido