VOLVER

Share

‘Machine learning’ para predecir el comportamiento de componentes electrónicos no testeados

La herramienta que se desarrolle en este proyecto del Centro Nacional de Aceleradores permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.

Fuente: Universidad de Sevilla


Sevilla |
18 de marzo de 2021

El Centro Nacional de Aceleradores (CNA) y Alter Technology, que actúa como Agente Agregado, lideran el proyecto de Predicción del Comportamiento Eléctrico de Dispositivos Electrónicos bajo Radiación (PRECEDER). Se trata de un subproyecto de transferencia del conocimiento, basado en la inteligencia artificial, cuyo objetivo es preparar una amplia base de datos y desarrollar técnicas de Aprendizaje Automático (‘Machine learning’) sobre un conjunto de resultados, que permitan predecir el comportamiento de otros componentes electrónicos no testeados en base a la experiencia.

El CNA, centro mixto de la Universidad de Sevilla, la Junta de Andalucía y el CSIC, es un referente para los ensayos de irradiación y la empresa Alter es experta en la irradiación de dispositivos electrónicos para el sector espacial. La evaluación del comportamiento frente a la radiación es esencial para el diseño y montaje de satélites, sondas, robots, etc.

La herramienta que se desarrolle en este proyecto permitirá predecir el comportamiento, por lo que tiene una aplicación directa en proyectos espaciales y de entornos hostiles. Esta permitirá al usuario conocer en la fase de diseño si un componente es adecuado para su instrumento, ahorrando así costes de ejecución de ensayos y tiempo.

PRECEDER se enmarca en el Proyecto Ecosistema Innovador con Inteligencia Artificial para Andalucía 2025 liderado por el Campus de Excelencia Internacional Andalucía TECH para que la Universidad de Sevilla y la Universidad de Málaga actúen con empresas tecnológicas tractoras para el desarrollo de tecnologías de inteligencia artificial en todos los ámbitos de la Estrategia de Especialización Inteligente (RIS3) en Andalucía. Cuarenta y nueve subproyectos de transferencia del conocimiento se engloban dentro de esta iniciativa financiada por la Junta de Andalucía, a través de la Dirección General de Investigación y Transferencia del Conocimiento de la Consejería de Transformación económica, Industria, Conocimiento y Universidades, enmarcada en el Programa Operativo FEDER.


Share

Últimas publicaciones

La Fundación Descubre llenará de ciencia el verano en Andalucía
Andalucía | 23 de mayo de 2024

Abierta la convocatoria para participar en la cuarta edición del programa de actividades estivales `Ciencia al Fresquito 365. ¡Llegó el verano!´. Las acciones se llevarán a cabo del 1 de julio al 30 de septiembre.

Sigue leyendo
Un proyecto de ciencia ciudadana diseña una guía doméstica para medir la calidad de los suelos
Andalucía | 22 de mayo de 2024

Investigadoras de la Universidad de Sevilla lideran esta iniciativa donde alumnado del IES Virgen de Valme (Dos Hermanas) y la asociación Enredaos con la Tierra (La Puebla del Río) desarrollarán un método destinado a público no experto para evaluar la biodiversidad y capacidad de descomposición de diferentes terrenos. Esta iniciativa forma parte del proyecto ‘Andalucía + ciencia ciudadana’, impulsado por la Consejería de Universidad, Investigación e Innovación y coordinado por Fundación Descubre y la Universidad Pablo de Olavide, que pretende potenciar la utilización de este abordaje científico participativo entre distintos agentes de la región.

Sigue leyendo
Las características del hábitat determinan la presencia de parásitos de la malaria aviar en mosquitos
Sevilla | 22 de mayo de 2024

Un estudio liderado por la Estación Biológica de Doñana (EBD-CSIC) señala que la presencia de estos parásitos en mosquitos es mayor a medida que aumenta la distancia a marismas y ríos. Los resultados, obtenidos tras analizar más de 16.000 mosquitos, muestran una mayor riqueza de linajes genéticos de parásitos de la gripe aviar en zonas naturales frente a las rurales.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido