VOLVER

Share

Premian un sistema inteligente para detectar armas en vídeos en tiempo real diseñado en la Universidad de Granada

Fuente: Universidad de Granada


19 de mayo de 2017
Entrega del premio con el Consejero del Interior del Gobierno Autonómico de Cataluña (Imagen de Xavi Gómez)

Entrega del premio con el Consejero del Interior del Gobierno Autonómico de Cataluña (Imagen de Xavi Gómez)

Durante los días 17 y 18 de mayo se ha celebrado en Barcelona la quinta edición del Security Forum, un evento anual posicionado como un referente en el sector de la seguridad.  

El jurado de Security Forum 2017  ha fallado la quinta convocatoria de los premios Security Forum, que pretenden promover y potenciar la investigación, el desarrollo y la innovación de la industria de la seguridad en España, a través del reconocimiento a los responsables de proyectos actuales de investigación en materia de seguridad, y a aquellos proyectos de carácter significativo ejecutados, que puedan ser modelo y escaparate internacional del amplio potencial de nuestra industria.

En la categoría Premio Security Forum I+D+i el ganador ha sido la Universidad de Granada: Sistema de detección de armas de fuego en vídeo en tiempo real, realizado por Siham Tabik, Roberto Olmos y Francisco Herrera.

Los premiados en el Security Forum 2017 (Imagen de Xavi Gómez)

Los premiados en el Security Forum 2017 (Imagen de Xavi Gómez)

Entre 2012 y 2014, la tasa de criminalidad causada por armas de fuego es muy preocupante en muchas partes del mundo, especialmente en los países en los que se permite legalmente su posesión. Las últimas estadísticas de UNODC (United Nations Office on Drugs and Crime) revelan quela tasa de asesinatos con armas de fuego por cada 100.000 habitantes es del 62.0 en Venezuela,15.7 en Méjico,3.9 en Estados Unidos y 0.6 en España. Adicionalmente, varios estudios psicológicos han demostrado que el sólo hecho de tener acceso a una arma de fuego aumenta drásticamente la probabilidad de un comportamiento violento que lleve a usarla.

Una de las formas de reducir la amenaza de violencia que generan las armas de fuego es la detección temprana de su presencia con margen de tiempo suficiente para que los agentes o vigilantes puedan actuar. En este contexto, una solución innovadora y efectiva consistiría dotar a las cámaras de vigilancia y/o control con un sistema de detección de armas automático.

El sistema de inteligencia artificial desarrollado por el equipo de la Universidad de Granada activa un aviso cuando detecta la presencia de un arma de fuego en una escena de un vídeo. El sistema está basado en el uso de algoritmos de aprendizaje profundo (deep learning, modelos neuronales artificiales que imitan las conexiones del sistema nervioso). En particular, se utiliza un modelo conocido como CNN (convolutional neural network).  El modelo de aprendizaje utilizado para detectar las pistolas se ha entrenado sobre más de 3000 imágenes que contenían pistolas.

Tras el entrenamiento, el sistema inteligente adquiere la capacidad de distinguir las pistolas del resto de objetos empuñados por una persona.

Posteriormente, cuando procesa una secuencia de vídeo localiza la presencia de pistolas en las imágenes y activa una alarma. El sistema procesa cinco imágenes por segundo, y activa la alarma cuando se detecta una secuencia de imágenes positivas (arma).

Se ha mostrado el buen funcionamiento del sistema inteligente de detección de pistolas en diferentes escenas de películas muy populares de los años 90, The World is Not Enough, PulpFiction, Mission Impossible (Rogue Nation) and Mr. Bean (los videos están disponibles en el siguiente repositorio de github,  https://github.com/SihamTabik/Pistol-Detection-in-Videos).  

Cuando el sistema detecta un objeto en alguna escena de estos vídeos con una probabilidad de ser pistola mayor al 70%, se destaca el arma con un cuadro de color rojo incluyendo un porcentaje correspondiente a la probabilidad de acierto. A pesar de la baja calidad de los vídeos usados como ejemplo, el detector proporciona una precisión bastante alta y un número de falsos positivos (objetos marcados como pistola cuando en realidad no lo eran) muy bajo en todos ellos.

Las aplicaciones de esta tecnología en seguridad son múltiples. Por ejemplo, la policía o agentes de seguridad podrían encontrar en un vídeo las escenas donde se visualicen pistolas sin necesidad de rebobinar horas de grabación. De igual forma, un sistema de cámaras de seguridad podría activar una alerta de la presencia de pistolas sin necesidad de una intervención humana. Así, un joyero que sufra un atraco con pistola en su joyería no tendría que arriesgar su vida intentando pulsar un botón que avise a la policía porque el sistema ya se encargaría de hacerlo. Actualmente, el sistema se centra en la detección pistolas ya que son el tipo de armas más usado en los crímenes, aunque estamos trabajando para extenderlo a armas blancas, como, por ejemplo, cuchillos, navajas.

La puesta en marcha del sistema es relativamente sencilla ya que sólo requiere de una simple cámara de vigilancia, un ordenador para analizar el vídeo, y un medio para mandar el aviso a través de una conexión de internet hacia un centro de control, que puede ser policía o una empresa de seguridad.

En la actualidad, ningún trabajo publicado, ni patente, ni producto comercial trata el problema de detección de pistolas en tiempo real usando aprendizaje profundo. Seguimos trabajando en la mejora de la precisión y robustez del sistema ampliando el conjunto de entrenamiento con imágenes de pistolas en movimiento. Además, estamos extendiendo la detección a un amplio rango de armas y otros objetos.

Recientemente,  la revista del Instituto de Tecnología de Massachusetts, MIT Technology Review, destaco este proyecto como una de las aplicaciones de inteligencia artificial más novedosas en el mes de Marzo y ha sido recientemente aceptado en la revista Neurocomputing.

Referencias:

Roberto Olmos, Siham Tabik,  Francisco Herrera  Automatic Handgun Detection Alarm in Videos Using Deep Learning, Neurocomputing, 2017, In press. http://www.sciencedirect.com/science/article/pii/S0925231217308196

Contacto:

Francisco Herrera

Dpto. de Ciencias de la Computación e Inteligencia Artificial

Universidad de Granada

Correo e-: herrera@decsai.ugr.es


Share

Últimas publicaciones

Investigan cómo transformar residuos para elaborar productos dedicados al bienestar de la mujer
Sevilla | 15 de enero de 2026

La investigación transformará residuos de origen animal en quitosano, para el desarrollo de productos cosméticos y funcionales orientados al bienestar de la mujer en etapas como la menopausia. La investigación combina tecnologías avanzadas de formulación con un enfoque multidisciplinar que integra conocimientos en química, ingeniería, ciencia de los alimentos y ciencia de materiales. El objetivo final es desarrollar formulaciones innovadoras con potencial de transferencia a la industria cosmética y alimentaria.

Sigue leyendo
Demuestra la eficacia de un medicamento común en el control de personas con asma grave
Málaga | 15 de enero de 2026

Un estudio internacional liderado desde Málaga abre nuevas posibles vías de tratamiento para las personas con asma. Así, investigadores de la Universidad de Málaga, de IBIMA Plataforma BIONAND y del Hospital Regional Universitario de Málaga han coordinado una publicación clave de la Academia Europea de Alergia e Inmunología Clínica (EAACI) que cambia la forma de entender y tratar esta enfermedad respiratoria que afecta a millones de personas en todo el mundo.

Sigue leyendo
Publican la posible ubicación de Madinat al Zāhira en el extremo este de Córdoba
Córdoba | 14 de enero de 2026

El investigador de la Universidad de Córdoba, Antonio Monterroso Checa, ha identificado este yacimiento en la zona relacionada con los cabezos de las Pendolillas, cuyo nombre se conoce desde el siglo XV. Este lugar ha sido desde esa fecha una zona de dehesa ligada al Realengo y sede de las Yeguadas Reales desde tiempos de Felipe II, al igual que sucedió con la ciudad de Abderramán III. Se trata de las dos únicas zonas de Dehesas Reales en Córdoba.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido