VOLVER

Share

La Universidad de Sevilla participa en un proyecto para el control de la autenticidad y la calidad de los aceites de oliva

El Servicio de Resonancia Magnética Nuclear del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto para el desarrollo de una aplicación que analice la autenticidad y calidad de aceites de oliva. El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen, el grado de calidad así como detectar perfiles atípicos de aceites de oliva.

Fuente: Universidad de Sevilla


Sevilla |
27 de octubre de 2023

El aceite de oliva es un alimento indispensable para la dieta mediterránea, siendo una fuente importante de numerosos componentes bioactivos: triglicéridos, ácidos grasos mono- y poliinsaturados, antioxidantes, vitaminas, minerales, etc. Los niveles de dichos componentes dependen de numerosos factores como son la variedad, la edad de los olivos, los procesos de producción, el tipo de suelo, el clima, el almacenaje, etc. Todos estos factores redundan en una mayor o menor calidad del aceite, siendo ‘virgen extra’ la categoría de máxima calidad y de mayor valor comercial.

A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados. Las prácticas más habituales son la mezcla con otros aceites de menor calidad o procedentes de otras fuentes (como el de girasol, por ejemplo) o el etiquetado fraudulento tanto respecto a su calidad como a su origen.

A pesar de su valor, el aceite de oliva sigue siendo uno de los alimentos más adulterados.

En esta línea, el Servicio de Resonancia Magnética Nuclear (RMN) del Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS) participa en un proyecto liderado por Bruker BioSpin para el desarrollo de una aplicación para el análisis de la autenticidad y calidad de aceites de oliva. Este proyecto se basa en la adquisición de una gran base de datos de varios miles de espectros de 1H-RMN de aceites de oliva autentificados de manera independiente en laboratorios especializados. Los parámetros analíticos de dichos aceites (p. ej. acidez, contenido en ácido oleico, polifenoles, etc.) así como los de calidad y origen geográfico se asocian a sus perfiles de 1H-RMN usando varias técnicas de Machine Learning.

El resultado es un sistema que, estadísticamente, permite obtener un grado de concordancia con el país de origen (Grecia, Italia o España) y el grado de calidad (virgen extra), detectar perfiles atípicos de aceites de oliva y, además, cuantificar de 15 a 20 parámetros analíticos en pocos minutos y usando menos de medio mililitro de muestra.

Más información en: Newfoodmagazine


Share

Últimas publicaciones

Analizan la relación de bacterias con residuos plásticos agrícolas para combatir su impacto en el campo
Córdoba | 05 de mayo de 2025

Científicos del Instituto de Agricultura Sostenible de Córdoba han diseñado una metodología para analizar por separado los microorganismos que habitan sobre los fragmentos de acolchados plásticos que cubren el suelo en la agricultura intensiva y los que viven en las partículas de tierra que se quedan adheridas. El trabajo podría ayudar a identificar bacterias capaces de degradar este material y contribuir así a la búsqueda de soluciones biológicas para combatir su acumulación en el campo.

Sigue leyendo
Diseñan un sistema inteligente de videovigilancia en tiempo real para aeropuertos
Málaga | 01 de mayo de 2025

Investigadores de la Universidad de Málaga han desarrollado un algoritmo de Inteligencia Artificial (IA) que realiza un agrupamiento no supervisado de objetos similares evitando el etiquetado manual. Este modelo es capaz de detectar una gran diversidad de elementos en la zona de pistas de un aeródromo, desde personas hasta aviones. Otra de las novedades es su optimización para ahorrar tiempo de cálculo y energía en las tareas de identificación, de forma que permite su uso en dispositivos de bajo consumo.

Sigue leyendo
Un nuevo estudio relaciona la exposición a bisfenoles presentes en alimentos con el sobrepeso en niñas
Granada | 30 de abril de 2025

El estudio, liderado por el Instituto de Investigación Biosanitaria de Granada con la participación de la Universidad de Granada, reveló que las niñas con mayor exposición al bisfenol A presentaban un riesgo casi tres veces mayor de desarrollar sobrepeso u obesidad. El hallazgo destaca la necesidad de seguir investigando sobre la relación entre contaminantes ambientales y enfermedades metabólicas para mejorar el bienestar de la población infantil.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido