Demuestran que el plegamiento tridimensional del genoma es esencial para el desarrollo embrionario
El estudio analiza por primera vez la función de la proteína CTCF en la fase de formación de órganos y del patrón corporal de un animal. Ésta se une al ADN y actúa delimitando las zonas dentro de las que pueden actuar los interruptores que ‘encienden’ y ‘apagan’ los genes responsables del desarrollo. El trabajo ha utilizado el pez cebra como modelo para dilucidar el papel que juega la estructura tridimensional del genoma en la regulación de la expresión de los genes durante el desarrollo embrionario.
Fuente: Universidad Pablo de Olavide
Un grupo de investigación del Centro Andaluz de Biología del Desarrollo (CABD), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC), la Junta de Andalucía y la Universidad Pablo de Olavide, ha publicado en la revista Nature Communications un trabajo que demuestra que la proteína CTCF es esencial para la correcta regulación de los genes responsables del desarrollo embrionario. De esta forma, se ha conseguido analizar por primera vez la función de CTCF in vivo, durante el desarrollo embrionario de un animal en su fase de formación de órganos y del patrón corporal, lo que abre nuevas vías de estudio.

Imagen de microscopía confocal de un embrión de pez cebra (Danio rerio) en la que se puede ver la proteína CTCF en el núcleo celular (rojo) y los filamentos de actina del citoesqueleto celular (verde) / CABD.
El trabajo, que ha sido destacado por investigadores líderes de su campo en un News & Views publicado en la revista Nature Structural and Molecular Biology, ha utilizado el pez cebra como modelo para dilucidar el papel que juega la estructura tridimensional del genoma en la regulación de la expresión de los genes durante el desarrollo embrionario. “Aproximadamente el 98% del genoma humano es ADN no codificante, es decir, no contiene genes. Pero, al contrario de lo que se pensó originalmente, gran parte de este ADN no codificante tiene una función”, aclara José María Santos Pereira, investigador del Consejo Superior de Investigaciones Científicas.
“Una parte del ADN no codificante está ocupado por lo que llamamos elementos reguladores, que son secuencias de ADN que, tomando prestada la metáfora que solía usar José Luis [en referencia a José Luis Gómez Skarmeta, investigador del CABD fallecido hace un año y líder del laboratorio donde se ha llevado a cabo este trabajo], funcionan como interruptores que apagan o encienden a los genes. Esto ocurre así en todos los vertebrados, como el pez cebra, que comparte aproximadamente un 70% de genes con el ser humano”, destaca. Así, durante el desarrollo embrionario, que es el proceso que lleva a una sola célula a convertirse en un animal completo, es cuando la regulación de la expresión de los genes alcanza su mayor complejidad. Y esto ocurre así gracias a que los genes responsables del desarrollo están controlados por múltiples de estos interruptores que los encienden y apagan en distintas células y momentos del desarrollo.
La proteína CTCF
“Aunque en muchos casos los interruptores se encuentran a largas distancias de sus genes diana en la secuencia lineal de la hebra de ADN, en los últimos años se ha demostrado que el genoma se pliega tridimensionalmente como una madeja de lana, facilitando el contacto de los interruptores con los genes a los que regulan”, señala el investigador. En mamíferos, se ha demostrado que una proteína llamada CTCF es clave para el plegamiento 3D del genoma, pero su función durante el desarrollo embrionario no se había podido estudiar hasta ahora. “Nosotros hemos sido capaces de superar esta limitación utilizando el pez cebra como modelo”, concluye Santos Pereira.
“Gracias a este modelo, hemos averiguado que CTCF es esencial para la correcta regulación de los genes responsables del desarrollo embrionario. ¿Cómo lo hace? Pues CTCF se une al ADN y actúa a modo de barrera delimitando las zonas dentro de las cuales pueden actuar los interruptores. En otras palabras, es como si dividiéramos la madeja de lana en una serie de ovillos consecutivos, separados unos de otros. Esto favorece que los interruptores enciendan o apaguen a sus genes diana y evita que enciendan o apaguen a otros que no les corresponde”, apunta el científico. De esta forma, los investigadores del grupo de Gómez Skarmeta han visto que, cuando CTCF no está, la ausencia de estas barreras elimina los pequeños ovillos y debilita el contacto de los interruptores con sus genes diana, al mismo tiempo que se forman nuevos contactos con otros genes, traspasando los límites que normalmente establece CTCF. Esto provoca que se desregulen genes muy importantes en el desarrollo, de hecho, cientos de ellos, y a su vez los genes que dependen de estos, dando lugar a miles de genes con expresión incorrecta.
La generación de este mutante de CTCF en pez cebra mediante la tecnología CRISPR de edición génica ha aportado un nuevo modelo con el que profundizar en la función de CTCF in vivo, durante el desarrollo embrionario animal, en futuros estudios. “Por ejemplo, la utilización de tecnologías de célula única en nuestro modelo podría permitirnos averiguar cuál es el impacto de la pérdida de CTCF en los distintos tipos celulares y órganos presentes en el embrión, es decir, si su función es más importante en unos tipos celulares que en otros y por qué”, señala Santos Pereira. También refuerza la idea de que el pez cebra es un modelo ideal para estudiar la pérdida de función de genes humanos que conduce a patologías congénitas.
Este trabajo ha contado, entre otras, con financiación de un ERC Advanced Grant, el Ministerio de Ciencia e Innovación, la Unidad de Excelencia María de Maeztu GEM-DMC2 y la Junta de Andalucía.
Referencia:
Martin Franke, Elisa De la Calle-Mustienes, Ana Neto, María Almuedo-Castillo, Ibai Irastorza-Azcárate, Rafael D. Acemel, Juan J. Tena, José M. Santos-Pereira y José L. Gómez-Skarmeta. CTCF knockout in zebrafish induces alterations in 3regulatory landscapes and developmental gene expression. Nature Communications. DOI: 10.1038/s41467-021-25604-5.
Últimas publicaciones
Llevado a cabo por un equipo de investigación del Centro Andaluz de Biología del Desarrollo, el estudio abre nuevas posibilidades para comprender mejor la miopatía nemalínica y desarrollar terapias que contrarresten los efectos del exceso de hierro y el estrés oxidativo.
Sigue leyendoUn estudio de la Universidad de Córdoba ha desarrollado una herramienta para predecir, bajo diferentes condiciones de temperatura, el desarrollo de una de las principales bacterias de transmisión alimentaria, lo que permite estimar con mayor precisión la vida útil de estos alimentos.
Sigue leyendoUn equipo de investigación de la Universidad de Sevilla ha desarrollado una tecnología que higieniza el agua filtrando restos contaminantes y descomponiéndolos mediante el uso de energía solar. Tras ensayos en el laboratorio y en una lavandería de hospital, este estudio evalúa la rentabilidad y sostenibilidad de esta técnica para la gestión de residuos, al regenerar un bien finito como el agua empleando un recurso natural, en este caso la luz del Sol.