VOLVER

Share

Desarrollan un método automático para detectar el discurso de odio en redes sociales

Un equipo de investigación de la Universidad de Jaén y de la Universidad de Murcia ha diseñado un sistema para textos en español que clasifica los mensajes dirigidos a dañar por motivos de raza, género, orientación sexual, nacionalidad o religión. El sistema combina el análisis de las características lingüísticas con redes neuronales basadas en mecanismos de atención, mejorando la precisión de los sistemas actuales. Con esta herramienta de procesamiento del lenguaje natural, se podrán agilizar los mecanismos de alerta sobre esas publicaciones y detenerlas antes de su difusión masiva.

 

 


Jaén |
20 de abril de 2022

El equipo de investigación SINAI de la Universidad de Jaén y el equipo de investigación TECNOMOD de la Universidad de Murcia han desarrollado un sistema automático de detección del discurso de odio en español en medios sociales. El modelo combina el análisis de características lingüísticas con redes neuronales basadas en mecanismos de atención, llamadas Transformers. Éstas permiten saber cuáles son los significados que más influyen sobre una palabra en concreto, útil en casos de polisemia o anáfora. De esta forma, alcanza unos resultados cercanos al 90% de precisión. El desafío de esta herramienta de procesamiento del lenguaje natural es agilizar la detección del lenguaje ofensivo para evitar su propagación masiva.

Imagen: Freekip.

La ingente cantidad de publicaciones diarias en medios sociales hace que sea imposible revisar cada comentario a mano. Para reducir el número de comentarios que deben ser revisados ​​por expertos o incluso para el desarrollo de sistemas autónomos de detección, los investigadores proponen un modelo de identificación automática de discursos de odio destinado a frenar su dispersión.Estudios anteriores apuntan que la presencia de estos mensajes dirigidos a dañar por motivos de raza, género, orientación sexual, nacionalidad o religión en las plataformas de redes sociales se correlaciona con los delitos de odio en la vida real. “No es factible depender de la supervisión manual para detener estas palabras ofensivas. Por ello, queremos contribuir a la detección del discurso de odio en español con un modelo automático y preciso que sea más rápido ”, incide la investigadora del Grupo Sistemas Inteligentes de Acceso a la Información (SINAI) de la Universidad de Jaén Salud María Jiménez Zafra, una de las autoras del estudio.

En concreto, los investigadores proponen en su artículo ‘Evaluating feature combination strategies for hate-speech detection in Spanish using linguistic features and transformers’ publicado en la revista Complex & Intelligent Systems un método que combina un sistema de extracción de características lingüísticas diseñado para el español y modelos computacionales. “Para ello, se utiliza la plataforma denominada UMUTextStats, desarrollada por el grupo TECNOMOD de la Universidad de Murcia, que obtiene de los textos características morfológicas, pragmáticas, semánticas, sintácticas, y de corrección y estilo, que reflejan qué quiere decir un texto dado y cómo lo dice”, explica el investigador José Antonio García Díaz del grupo TECNOMOD de la Universidad de Murcia.

A esto se suma un modelo del lenguaje basado en transformers, es decir, un sistema pre-entrenado que ha aprendido cómo se relacionan las palabras, expresiones y otras características del lenguaje a partir de un gran conjunto de datos.

Textos representados

Para que el ordenador ‘entienda’ el lenguaje natural se requiere una codificación adecuada. Para ello, el texto se traduce a modelos estadísticos que capturan diversas dimensiones del lenguaje. De esta forma, los investigadores incluyen 365 rasgos de interés extraídos de la herramienta UMUTextStats organizados en distintas categorías como fonéticas, morfosintácticas, semánticas, pragmáticas, estilométricas o jerga de los medios sociales. Así se contabilizan verbos, pronombres, adverbios, frases hechas o marcadores del discurso. “En el caso específico del odio, se atiende a cuestiones relacionadas como el género, los errores ortográficos, términos inclusivos, la presencia de términos relacionados con animales (zorra, perra…) o palabras malsonantes”, comenta el catedrático de la Universidad de Murcia Rafael Valencia García.

Junto a estos métodos que atienden a la propia palabra, se entrenan redes neuronales, es decir, algoritmos que funcionan como lo hace el cerebro humano, que cuenta con áreas especializadas en ciertas tareas, y que van aprendiendo con la incorporación de nuevos datos.

El resultado de esta combinación es un sistema para el idioma español más preciso, generalizable e interpretable. “Nuestra propuesta, basada en el uso de características lingüísticas y modelos del lenguaje, supera la precisión de estudios anteriores y alcanza un 90,4 % en algunos de los experimentos”, remarca el investigador del grupo SINAI de la Universidad de Jaén Miguel Ángel García Cumbreras.

Imagen: Freekip.

Además, el modelo generado fue evaluado con un conjunto más amplio de datos. “Los estudios existentes hasta la fecha trabajan con uno o dos de los conjuntos de datos más conocidos en español como HaterNet y HatEval. Sin embargo, existen más que la comunidad científica debería conocer y que podrían ayudar a avanzar en el estudio de este fenómeno”, precisa el catedrático de la Universidad de Murcia Rafael Valencia García.

La siguiente fase de la investigación será mejorar la interpretabilidad del sistema para que estos modelos sean comprensibles por cualquier persona no experta, es decir, que puedan entender cómo el algoritmo ha decidido clasificar ese mensaje de una forma u otra.

El equipo de investigación apunta que este modelo se plasmará en aplicaciones que indiquen de forma rápida si un mensaje contiene elementos de odio o no. Así se agilizará el mecanismo de alerta en las plataformas de medios sociales para avisar sobre la presencia de elementos odiosos en los contenidos o el seguimiento de usuarios que viertan continuamente mensajes de odio.

El trabajo ha sido realizado dentro de los proyectos de investigación LaTe4PSP, AIInFunds, LIVING-LANG, BigHug y WeLee financiados por la Agencia Estatal de Investigación y la Junta de Andalucía con fondos FEDER. Además, este trabajo ha sido posible gracias a una estancia de investigación de la Dra. Salud María Jiménez Zafra en el grupo TECNOMOD de la Universidad de Murcia y a la ayuda postdoctoral del programa PAIDI 2020 financiada por el Fondo Social Europeo y la Administración de la Junta de Andalucía (DOC_01073).

Referencias

García-Díaz, J.A., Jiménez-Zafra, S.M., García-Cumbreras, M.A., & Valencia-García, R. Evaluating feature combination strategies for hate-speech detection in Spanish using linguistic features and transformers. Complex Intell. Syst. (2022). https://doi.org/10.1007/s40747-022-00693-x

Más información:

#CienciaDirecta, agencia de noticias de ciencia andaluza, financiada por la Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía.

Teléfono: 958 63 71 99

E-mail: comunicacion@fundaciondescubre.es



Share

Últimas publicaciones

Validan un nuevo modelo para predecir el crecimiento de la listeria en quesos frescos artesanales
Córdoba | 01 de abril de 2025

Un estudio de la Universidad de Córdoba ha desarrollado una herramienta para predecir, bajo diferentes condiciones de temperatura, el desarrollo de una de las principales bacterias de transmisión alimentaria, lo que permite estimar con mayor precisión la vida útil de estos alimentos.

Sigue leyendo
Diseñan un sistema que elimina microplásticos de las aguas residuales de lavanderías y permite su reutilización
Sevilla | 29 de marzo de 2025

Un equipo de investigación de la Universidad de Sevilla ha desarrollado una tecnología que higieniza el agua filtrando restos contaminantes y descomponiéndolos mediante el uso de energía solar. Tras ensayos en el laboratorio y en una lavandería de hospital, este estudio evalúa la rentabilidad y sostenibilidad de esta técnica para la gestión de residuos, al regenerar un bien finito como el agua empleando un recurso natural, en este caso la luz del Sol.

Sigue leyendo
Un equipo de la US diseña un reloj inteligente para prevenir la osteoporosis a través del ejercicio físico
Sevilla | 28 de marzo de 2025

Investigadores de la Universidad de Sevilla inician el proyecto WEAPOM en el que se usará un dispositivo weareable para medir la carga mecánica que recibe el esqueleto y su impacto en la salud ósea. El equipo está en proceso de captación de mujeres postmenopáusicas interesadas en participar en este estudio. En concreto, mujeres con más de 45 años que lleven menos de diez años en la postmenopausia y no realicen ejercicio físico intenso de manera regular.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido