VOLVER

Share

Desarrollan un modelo que predice la calidad del acabado superficial de piezas impresas en tres dimensiones

Una nueva investigación en la que participan las Universidad de Córdoba y Jaén desarrolla un sistema capaz de predecir la calidad del acabado superficial de piezas impresas en tres dimensiones, lo que permite saber de antemano cómo imprimir un objeto con la rugosidad deseada.

Fuente: Universidad de Córdoba


Córdoba |
12 de mayo de 2022

La impresión en 3D ha experimentado un auge durante los últimos años y se ha constituido como un elemento fundamental de la ‘industria 4.0’. Cada vez son más las empresas orientadas a este sector y el número de usuarios que desde sus propios hogares se lanza en busca de objetos tridimensionales. Repuestos para automóviles, prótesis dentales, diseño de asientos o fabricación de joyas son sólo algunos ejemplo del extenso abanico de posibilidades que ofrece el mundo de la también llamada fabricación aditiva.

Un investigador de la UCO junto a una máquina de impresión 3D.

Si bien esta tecnología supone un cambio significativo en la producción industrial aún se enfrenta a varios retos. Un equipo de investigación de las universidades de Córdoba (UCO), Jaén y Opole (Polonia) se ha puesto manos a la obra para solventar uno de estos desafíos: perfeccionar el acabado superficial de las piezas impresas. Para ello, han creado un modelo capaz de predecir la rugosidad de estos objetos, o lo que es lo mismo, el conjunto de irregularidades que posee su superficie.

«Es fundamental que las piezas impresas tengan un buen acabado superficial, aparte de la cuestión estética, superficies menos rugosas, son, por ejemplo, más fáciles de limpiar», explica Pablo Romero, investigador del grupo PRINIA de la UCO y uno de los autores del estudio. Para ello, el equipo de investigación ha realizado 2.400 mediciones de filamentos de PETG (el plástico más usado en el mundo de la impresión 3D), combinado con distintos porcentajes de fibra de carbono, un material que suele usarse como refuerzo en estas piezas y que les confiere una gran resistencia al peso, la tracción u otras fuerzas mecánicas a las que se ven sometidas en el día a día.

Hasta la fecha, explica el investigador, «no se había estudiado la relación entre la cantidad de fibra de carbono de piezas impresas y su acabado superficial». Los resultados obtenidos, tratados con técnicas de inteligencia artificial, permiten además correlacionar la rugosidad que tendría un objeto con distintos parámetros de la impresora, como, por ejemplo, la velocidad de impresión, la altura de las capas mediante las que se genera la pieza o el diámetro de la boquilla por la que sale el plástico que va conformando el objeto. De esta forma, la máquina puede ser reglada para ajustar la impresión según el resultado deseado. «La utilidad de este estudio es que permite saber de antemano cómo imprimir una pieza en función del acabado superficial que se busque, ya que si no conoces su relación con los parámetros de entrada de la impresora, vas un poco a ciegas», concluye el profesor Pablo Romero.

Cuando el acabado superficial y la resistencia son compatibles

Si bien las fibras de carbono confieren propiedades mecánicas mejoradas a estos objetos impresos, por encima de cierto umbral afectan su superficie. En este sentido, el trabajo ha comprobado que, si se ajustan ciertos parámetros de impresión, es viable imprimir piezas con un 20% de fibra y obtener unos niveles buenos de rugosidad. Además, el acabado de objetos con un 12% de estos filamentos es similar a los obtenidos con piezas que carecen de ellos, lo que demuestra que es posible imprimir piezas con buenas propiedades mecánicas sin sacrificar el acabado superficial y que, por lo tanto, ambos elementos son compatibles.

El trabajo, de esta forma, da un paso más en el desarrollo de esta tecnología y podría servir de utilidad para el sector empresarial, que cada vez con más frecuencia, se sirve de la impresión 3D para fabricar repuestos más rápido y de mayor calidad y distribuir bienes de manera más eficiente.

Referencia bibliográfica:

Alberto García-Collado, Pablo Eduardo Romero-Carrillo, Rubén Dorado-Vicente, and Munish Kumar Gupta. Studying the Effect of Short Carbon Fiber on Fused Filament Fabrication Parts Roughness via Machine Learning. 3D Printing and Additive Manufacturing. 28 Apr 2022https://doi.org/10.1089/3dp.2021.0304


Share

Últimas publicaciones

La Fundación Descubre reúne a 114 promotores de toda España en el Registro Nacional de Turismo Científico tras la cuarta convocatoria
España | 19 de julio de 2024

La entidad andaluza, que coordina el proyecto Turismo Científico, incorpora a la iniciativa 15 nuevos promotores de Andalucía, Castilla-La Mancha, Castilla y León Extremadura y Comunidad de Madrid. La suma de estos agentes de divulgación científica, tanto del ámbito público como empresas privadas, les permitirá tener más visibilidad, establecer alianzas, compartir buenas prácticas y acceder a formación en su área.

Sigue leyendo
Desarrollan un método para el análisis de muestras pequeñas con imágenes no visibles por el ojo humano
Sevilla | 19 de julio de 2024

Un equipo de investigación de la Universidad de Sevilla ha diseñado una nueva técnica basada en la representación de colores imperceptibles con la que logran información más precisa de una sustancia analizada. El sistema puede aplicarse en áreas como la agroalimentación, farmacia o medicina, donde se podrán estudiar las características de compuestos de manera rápida, sostenible y sin alterar las pruebas.

Sigue leyendo
Investigadores de la UCA diseñan nuevos fármacos que se activan por la luz para mitigar el dolor neuropático
Cádiz | 19 de julio de 2024

Investigadores de la Universidad de Cádiz han desarrollado un nuevo fármaco que se activa a través de la luz para tratar el dolor neuropático. Estos compuestos, que muestran efectos analgésicos cuando son activados, pueden inhibir las señales nerviosas localmente y a demanda, por lo que ofrecen una acción precisa, reduciendo así los efectos secundarios sistémicos. El equipo ya está trabajando en el siguiente paso que consistirá en activar fármacos utilizando luz infrarroja.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido