Diseñan nanocápsulas solubles y ‘a la carta’ que facilitan la absorción de fármacos dentro del organismo
Un equipo de investigación de la Universidad de Sevilla ha desarrollado unas nanoestructuras esféricas que favorecen la asimilación de sustancias con actividad farmacológica que no son solubles en agua. De este modo, evitan que los compuestos se acumulen en los tejidos y a largo plazo produzcan efectos tóxicos perjudiciales para la salud.
Un equipo de investigación de la Universidad de Sevilla ha diseñado nanocápsulas solubles y ‘a la carta’ que facilitan la absorción de fármacos dentro del organismo. Estas nanoestructuras esféricas, aún en fase de ensayo, están diseñadas para favorecer la entrada en sangre de compuestos que habitualmente el cuerpo humano no asimila por sí solo. Por ejemplo, la dexametasona, un antiinflamatorio extremadamente insoluble en agua. Con esta propuesta, se podrían tratar enfermedades localizadas como infecciones o tumores.
Normalmente, al ingerir los medicamentos éstos se incorporan al torrente sanguíneo, donde se trasladan y realizan su función. Sin embargo, hay fármacos con baja biodisponibilidad, es decir, que tan solo un bajo porcentaje del mismo llega a absorberse en el organismo. “Éstos se van acumulando poco a poco en los tejidos porque no se asimilan bien, lo que supone un problema, dado que a largo plazo pueden producir efectos tóxicos como dolores de cabeza, palpitaciones y alteraciones respiratorias, entre otros síntomas, perjudiciales para la salud”, explica a la Fundación Descubre la investigadora de la Universidad de Sevilla Victoria Valdivia.
Para solucionar este reto, los investigadores proponen una nanocápsula con una estructura que se asemeja al huevo de un anfibio, que contiene un embrión y una cobertura protectora. En el caso de la propuesta de los científicos, la nanocápsula (es decir, la cobertura), estaría elaborada con compuestos ‘a la carta’ en cuyo núcleo se encontraría el fármaco.
Los compuestos que constituyen la nanocápsula, llamada micela, tienen tres beneficios: primero, son biocompatibles, por lo que facilitan que el organismo asimile mejor la medicación. Además, evitan que ésta se acumule en los tejidos, reduciendo así sus efectos tóxicos. Por último, al ser biocompatibles, el organismo puede metabolizarlos una vez absorbidos, por lo que sirven como ‘alimento’ para las células humanas. Esto las diferencia de otras nanoestructuras con funciones similares, que normalmente deben expulsarse mediante la orina.
Otra de las ventajas que destacan los investigadores en el artículo titulado ‘Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles’ y publicado en Nanomaterials, es que estas nanocápsulas pueden contener nanopartículas de oro o hierro. De este modo, por ejemplo, en el caso de las de hierro, los expertos podrían emplear un imán con el que dirigirlas a zonas específicas del cuerpo. “Así se favorece la distribución selectiva del fármaco a las células y tejidos donde deben ejercer su acción. También pueden emplearse como agentes de contraste en pruebas de imagen como la Resonancia Magnética de Imagen (RMI). Aunque estas, al contener metales, sí deben expulsarse por la orina”, explica a la Fundación Descubre la investigadora de la Universidad de Sevilla Victoria Valdivia.
Del tamaño de un virus
Para elaborar estas nanocápsulas esféricas, primero sintetizaron los compuestos químicos biocompatibles y los combinaron con agua. Posteriormente, sometieron la mezcla a una técnica de ultrasonidos para que se formaran nanogotas de entre 100 y 200 nanómetros, el mismo tamaño aproximado que un virus. “Queríamos que fuesen relativamente fáciles de elaborar. De este modo, se pueden replicar cambiando únicamente la composición del fármaco o de las moléculas que forman la cobertura de la nanopartícula”, explica Victoria Valdivia.
En concreto, las nanocápsulas están compuestas por moléculas que tienen una parte polar que forma la cobertura y es soluble en agua. La parte no polar es el núcleo donde se localiza el fármaco. Tal y como ocurre en el caso de los huevos de rana, posee una capa exterior blanda que recoge el contenido en su interior.
Después, mediante diversas técnicas que evaluaron el volumen de la nanopartícula en seco y luego, en una solución hídrica, determinaron que eran adecuadas y fiables como portadoras de fármacos. Los investigadores realizaron esta comprobación para asegurarse de que tenían el tamaño adecuado para introducirlas en el organismo de forma segura y que éstas mantuvieran sus propiedades dentro del cuerpo humano.
A continuación, añadieron el fármaco dexametasona como sólido a las nanopartículas y lo agitaron durante 24 horas a 50 grados centígrados para que no se degradaran los compuestos. “También comprobamos qué cantidad del fármaco había entrado en el núcleo comparando el peso de la nanocápsula llena y vacía”, añade Victoria Valdivia.
Finalmente, ensayaron la eficacia de estas nanoestructuras introduciéndolas por una membrana de diálisis, un ‘filtro’ que tan solo permite el paso de agua y compuestos de un tamaño determinado, tal y como ocurre con las venas humanas. De este modo, comprobaron que las nanopartículas no pasaban, pero sí las moléculas del fármaco. Al finalizar su labor, las micelas se fundirían con las células o se expulsarían de forma natural mediante la orina.
Enfermedades localizadas
Los investigadores señalan que el empleo de este tipo de sistemas para la administración de fármacos aumentaría la eficacia de los mismos porque, por un lado, las nanocápsulas incrementan la biodisponibilidad. Por otro lado, mediante la ‘personalización’ de la membrana que rodea el fármaco o a través de la introducción de nanopartículas metálicas junto con el fármaco, se podría distribuir éste de manera selectiva únicamente a las células y tejidos afectados donde deba realizar su función.
El siguiente paso del grupo de Estereoquímica y Síntesis Asimétrica va en esta dirección y los investigadores se centran en dos cuestiones principales: primero, en continuar con el desarrollo de estas nanogotas y en realizar ensayos in vitro e in vivo. Segundo, en encontrar métodos alternativos para dirigir las nanopartículas a lugares muy concretos del organismo, en función de la enfermedad que se quiera tratar, para ejercer su acción. “Por ejemplo, esta técnica serviría para tratar el cáncer de forma más específica”, explica Victoria Valdivia.
Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación y la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.
Referencias
Valdivia, V.; Gimeno-Ferrero, R.; Pernia Leal, M.; Paggiaro, C.; Fernández-Romero, A. M.; González-Rodríguez, M. L. & Fernández, I. (2022). ‘Biologically Relevant Micellar Nanocarrier Systems for Drug Encapsulation and Functionalization of Metallic Nanoparticles’. Nanomaterials, 12(10), 1753.
Más información:
#CienciaDirecta, agencia de noticias de ciencia andaluza, financiada por la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, con la colaboración de la Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia e Innovación.
Teléfono: 958 63 71 99. Extensión 205
Documentación adicional
Equipo de investigación de la Universidad de Sevilla responsable del estudio
Últimas publicaciones
Un equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.
Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?
Sigue leyendoEl consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, ha presidido el Patronato celebrado en Sevilla. El Plan prevé el fomento además de la divulgación en el ámbito de la emergencia, la seguridad y la defensa, al tiempo que comenzarán los trabajos para la divulgación del trío de eclipses solares previstos en la Península para 2026, 2027 y 2028. La Fundación ha celebrado previamente el acto de reconocimiento de las personas y entidades Colaboradoras Extraordinarias de Descubre.