VOLVER

Share

Diseñan un software para el reconocimiento automático de desperfectos en pista aeroportuarias

El diseño de este sistema de detección y clasificación de desperfectos, realizado por la Universidad Pablo de Olavide, hace uso de un robot aéreo específicamente diseñado para esta tarea, equipado con una cámara de alta resolución, sistemas de vuelos automáticos y un sistema de iluminación artificial para vuelos nocturnos. Este dron ha sido diseñado, desarrollado y construido por la empresa Flying Robotic Solutions S.L.

Fuente: Universidad Pablo de Olavide


Sevilla |
05 de marzo de 2021

El grupo de investigación Data Science & Big Data Lab de la Universidad Pablo de Olavide está diseñando un software que permite reconocer de manera automática desperfectos en pistas de aeropuertos. Esta herramienta será empleada en una solución integral denominada ‘Airport Pavement Inspection by Aerial Robotic System’, propiedad de Soologic Technological Solutions S.L, empresa con una dilatada experiencia en este sector.

En la fila de arriba, de izquierda a derecha, Manuel Jesús Jiménez Navarro (UPO), David Blanco de Córdova Muñoz (Soologic) y Sergio Ruiz Miranda (Soologic); en la fila de abajo, de izquierda a derecha, Alicia Troncoso Lora (UPO), Antonio Jesús Cabrera Tordera (Soologic) y Francisco Martínez Álvarez (UPO).

El diseño de este sistema de detección y clasificación de desperfectos de pavimentos aeroportuarios hace uso de un robot aéreo específicamente diseñado para esta tarea, equipado con una cámara de alta resolución, sistemas de vuelos automáticos y un sistema de iluminación artificial para vuelos nocturnos. Este dron ha sido diseñado, desarrollado y construido por la empresa Flying Robotic Solutions S.L.

«El robot aéreo realiza vuelos por las zonas en las que un desperfecto puede conllevar problemas de seguridad, tanto en el despegue como en el aterrizaje de un avión. Posteriormente, las imágenes son procesadas mediante un módulo que tiene incorporado inteligencia artificial y que es capaz de detectar qué zonas tienen, en efecto, algún tipo de desperfecto», explica Francisco Martínez Álvarez, profesor de la Escuela Politécnica Superior de la UPO e investigador principal del proyecto.

Las técnicas fundamentales que se utilizan en este módulo son aprendizaje profundo (deep learning) y transferencia de conocimiento (transfer learning). El algoritmo de deep learning es capaz de aprender de otras imágenes previamente clasificadas, de modo que, tras recibir una nueva imagen, es capaz de determinar con gran precisión a qué tipo de desperfecto se parece más. Además, como el tiempo de vuelo dentro de un aeropuerto está limitado debido al gran tráfico existente, en muchas ocasiones no se disponen de suficientes imágenes para poder aprender, por lo que este grupo de investigación ha optado por incorporar otras fuentes de imágenes para alimentar al sistema y permitirle aprender por otras vías: es lo que se conoce como transfer learning.

La posibilidad de realizar los vuelos de reconocimiento en cualquier momento del día o de la noche, sin necesidad de que un operario recorra las pistas, evitando así los problemas de seguridad asociados a este tipo de inspecciones, es uno de los principales beneficios del uso de estas técnicas, así como el poder disponer de un sistema capaz de clasificar con una precisión muy alta y que, además, permita ir mejorando su rendimiento conforme se van tomando más imágenes.

Además, otra ventaja indiscutible de este proyecto es la informatización que todo el proceso lleva aparejado ya que, como resultado final, se visualiza la pista de aterrizaje bajo estudio con las zonas que requieren atención marcadas.

El grupo de investigación Data Science & Big Data Lab tiene una amplia experiencia en proyectos y publicaciones relacionadas con machine learning. Además del citado investigador principal, participan en este proyecto Alicia Troncoso Lora, Federico Divina, Miguel García Torres, Gualberto Asencio Cortés, David Gutiérrez Avilés, José F. Torres Maldonado, Manuel Jesús Jiménez Navarro y Laura Melgar García.

El contrato entre la UPO y Soologic Technological Solutions S.L se ha firmado al amparo del artículo 83 de la Ley Orgánica de Universidades (LOU) bajo la gestión de la Oficina de Transferencia de Resultados de Investigación (OTRI) de la Universidad Pablo de Olavide, que faculta a los grupos de Investigación reconocidos por la universidad, a los Departamentos, y a su profesorado a celebrar contratos con personas, universidades o entidades públicas y privadas para la realización de trabajos de carácter científico, técnico o artístico, así como para el desarrollo de enseñanzas de especialización o actividades específicas de formación.


Share

Últimas publicaciones

Las 13 ferias de la ciencia andaluzas mostrarán esta primavera los trabajos de 12.600 estudiantes a través de una nueva web y en formato virtual
Andalucía | 10 de abril de 2021

Los encuentros forman parte de la Red de Ferias de la Ciencia y la Innovación de Andalucía que impulsa la Fundación Descubre con financiación de la Consejería de Transformación Económica, Industria, Conocimiento y Universidades. El nuevo portal web de la Red y la plataforma virtual serán el punto de encuentro de las citas andaluzas, que serán totalmente online por primera vez debido a la pandemia.

Sigue leyendo
Drones y modelos topográficos para identificar y analizar las huellas neandertales en la playa de Matalascañas en Huelva
Huelva, Sevilla | 09 de abril de 2021

El Laboratorio SIG y Teledetección de la Estación Biológica de Doñana (CSIC) realizó vuelos dron a dos alturas (10 y 30 metros) durante la marea baja antes de que el yacimiento volviera a desaparecer bajo el mar y la arena. Se generó un mosaico fotográfico georreferenciado que ha sido la base para la identificación y análisis de las huellas neandertales recientemente descubiertas, además de un modelo topográfico que ha permitido estimar los tamaños de los individuos por la profundidad de las huellas.

Sigue leyendo
El tiempo que los menores pasan frente a la pantalla influye en sus hábitos alimentarios
Málaga | 09 de abril de 2021

Este estudio realizado por el grupo EpiPHAAN (Epidemiology, Physical Activity, Accelerometry and Nutrition) de la Universidad de Málaga y del Instituto de Investigación Biomédica de Málaga (IBIMA) evidencia cómo la exposición a móviles y videojuegos se relaciona con un peor seguimiento de la dieta mediterránea.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Este sitio web utiliza cookies para mejorar tu experiencia. Continuando la navegación aceptas su uso. Más información

Los ajustes de cookies de esta web están configurados para "permitir cookies" y así ofrecerte la mejor experiencia de navegación posible. Si sigues utilizando esta web sin cambiar tus ajustes de cookies o haces clic en "Aceptar" estarás dando tu consentimiento a esto.

Cerrar