VOLVER

Share

Identifican un nuevo mecanismo de reparación de roturas del ADN

Investigadores de la Universidad de Sevilla y del Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), han identificado nuevos factores necesarios para la reparación de estas roturas cromosómicas, que pueden provocar la muerte celular si no son reparadas de manera correcta.

Fuente: Universidad de Sevilla


Sevilla |
27 de noviembre de 2019

Las roturas cromosómicas son el daño del ADN más nocivo para la célula. Si no se reparan, bloquean la duplicación y segregación de los cromosomas, detienen el ciclo de crecimiento y provocan la muerte celular.

Recreación de la rotura de ADN.

Estas roturas aparecen frecuentemente en células tumorales y se producen de forma espontánea durante la replicación del material genético. Para poder reparar este daño en el material genético, la célula traslada la información de la copia hija intacta a la copia rota, es lo que se conoce como recombinación entre cromátidas hermanas.

En un trabajo publicado recientemente por la revista Nature Communications, investigadores de la Universidad de Sevilla y del Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), han identificado nuevos factores necesarios para la reparación de estas roturas. Estos factores, a diferencia de los ya conocidos, solo afectan a la reparación entre cromátidas hermanas de roturas surgidas durante la duplicación de los cromosomas. En concreto, son proteínas que modifican las ‘histonas’, que son las proteínas básicas que forman la estructura de los cromosomas.

El grupo de investigación ha demostrado que la incapacidad de reparar dichas roturas en células carentes de estas proteínas deriva de una carga deficiente de cohesinas. Éstas son las proteínas que mantienen las cromátidas hermanas juntas y emparejadas hasta su segregación de la división mitótica. Al disminuir la cohesión entre las cromátidas, la reparación es defectuosa quedando muchas roturas sin reparar y aumentando así las reorganizaciones cromosómicas.

Responsables del estudio en el Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER),

El trabajo, realizado en el organismo modelo Saccharomyces, identifica nuevos factores implicados en el mantenimiento de la integridad del genoma y un nuevo mecanismo por el que se regula la carga de cohesinas en los cromosomas, que pueden ser de gran valor para descifrar los múltiples mecanismos responsables de la inestabilidad genómica de las células tumorales, responsables de enfermedades como el cáncer y de diversas patologías neurodegenerativas.

Este estudio corresponde a la tesis doctoral de Pedro Ortega, dirigida por los profesores Belén Gómez-González y Andrés Aguilera, y que ha contado con financiación de la Asociación Española Contra el Cáncer(AECC), el European Research Council y el Ministerio de Economia y Competitividad.


Share

Últimas publicaciones

Un estudio revela que solo el 16% de las áreas de gran biodiversidad goza de protección frente al tráfico marítimo
Sevilla | 26 de noviembre de 2025

Una investigación con participación de la EBD-CSIC revela una cobertura insuficiente de las Áreas Marinas Protegidas. El trabajo sienta las bases para definir políticas que gestionen de forma sostenible los desafíos ecológicos que implica el transporte marítimo.

Sigue leyendo
Los cambios ambientales del pasado impulsaron la aparición de nuevas especies
Sevilla | 25 de noviembre de 2025

Un estudio internacional en el que participa un investigador de la Universidad de Sevilla, ha analizado el caso del sudeste asiático, una de las regiones con mayor diversidad biológica del planeta, y ha identificado una nueva especie de ardilla, posiblemente la ardilla arborícola más grande del mundo.

Sigue leyendo
Revelan por primera vez un mecanismo esencial para el inicio de la vida en los vertebrados
Sevilla | 25 de noviembre de 2025

Gracias a una herramienta CRISPR que elimina el ARN, investigadores del CABD han observado por primera vez el momento en que el embrión toma el control de su desarrollo. Una modificación química permite al embrión encender su propio genoma y borrar las instrucciones heredadas de la madre para iniciar su formación.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido