Investigadores de la UCO mejoran la visión artificial de máquinas en condiciones de poca iluminación
Un novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.
Fuente: UCC+i Universidad de Córdoba
A la hora de configurar un robot, como el antropomófirco Atlas de Boston Dynamics que aparece haciendo ejercicio y ordenando cajas, los marcadores fiduciales son la guía que les ayuda a moverse, detectar objetos y determinar su ubicación exacta. Se trata de una herramienta de visión artificial que se usa para estimar la posición de los objetos. A simple vista son códigos cuadrados planos en blanco y negro con un marcado contraste que podrían asemejarse al sistema de marcado QR pero con una ventaja: se pueden detectar a mucha más distancia.
En logística, una cámara en el techo permite identificar la ubicación de un paquete de forma automatizada usando estos marcadores, ahorrando tiempo y dinero. La debilidad del sistema era, hasta ahora, las condiciones de iluminación, ya que las técnicas clásicas de visión artificial que localizan y decodifican con precisión los marcadores fallan en situaciones con poca luz.

El uso de redes neuronales en el modelo nos permite la detección de este tipo de marcadores de manera más flexible.
Para hacer frente a esta problemática, los investigadores Rafael Berral, Rafael Muñoz, Rafael Medina y Manuel J. Marín del grupo de investigación Aplicaciones de la Visión Artificial de la Universidad de Córdoba han desarrollado un sistema que permite, por primera vez, detectar y decodificar marcadores fiduciales en condiciones de iluminación difícil, utilizando redes neuronales.
“El uso de redes neuronales en el modelo nos permite la detección de este tipo de marcadores de manera más flexible, resolviendo el problema de la iluminación para todas las fases en el proceso de detección y decodificación” explica el investigador Rafael Berral. El proceso completo está compuesto por tres pasos: detección de marcadores, refinamiento de esquinas y decodificación de marcadores, cada uno basado en una red neuronal diferente.
Es la primera vez que se da una solución completa a esta problemática, ya que como señala Manuel J. Marín “hay muchos trabajos que en situaciones de iluminación óptima han intentado acelerar la velocidad, por ejemplo, pero la problemática de poca iluminación o muchas sombras no había sido atendida de forma completa para mejorar el proceso”.
Cómo entrenar a tu modelo de visión artificial
A la hora de entrenar este modelo que presenta una solución de principio a fin, el equipo ha creado un conjunto de datos sintéticos que reflejan de una manera fidedigna el tipo de circunstancias de iluminación que se pueden encontrar cuando se trabaja con un sistema de marcadores fuera de las condiciones ideales. Una vez entrenado, “el modelo se probó con datos del mundo real, unos producidos aquí internamente y otros como referencia de otros trabajos anteriores” indican los investigadores.
Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad “ya que el código está liberado y se dan facilidades para probar el código con cualquier imagen en la que aparezcan marcadores fiduciales” recuerda Rafael Muñoz.
Con este trabajo, las aplicaciones de visión artificial consiguen superar un nuevo obstáculo, avanzando en la oscuridad.
Referencia:
Berral Soler, R., Muñoz-Salinas, R., Medina-Carnicer, R. & Marín-Jiménez, M.J. (2024) ‘DeepArUco++: Improved detection of square fiducial markers in challenging lighting conditions’, Image and Vision Computing.
Últimas publicaciones
Científicos del Instituto de Agricultura Sostenible de Córdoba han diseñado una metodología para analizar por separado los microorganismos que habitan sobre los fragmentos de acolchados plásticos que cubren el suelo en la agricultura intensiva y los que viven en las partículas de tierra que se quedan adheridas. El trabajo podría ayudar a identificar bacterias capaces de degradar este material y contribuir así a la búsqueda de soluciones biológicas para combatir su acumulación en el campo.
Investigadores de la Universidad de Málaga han desarrollado un algoritmo de Inteligencia Artificial (IA) que realiza un agrupamiento no supervisado de objetos similares evitando el etiquetado manual. Este modelo es capaz de detectar una gran diversidad de elementos en la zona de pistas de un aeródromo, desde personas hasta aviones. Otra de las novedades es su optimización para ahorrar tiempo de cálculo y energía en las tareas de identificación, de forma que permite su uso en dispositivos de bajo consumo.
Sigue leyendoEl estudio, liderado por el Instituto de Investigación Biosanitaria de Granada con la participación de la Universidad de Granada, reveló que las niñas con mayor exposición al bisfenol A presentaban un riesgo casi tres veces mayor de desarrollar sobrepeso u obesidad. El hallazgo destaca la necesidad de seguir investigando sobre la relación entre contaminantes ambientales y enfermedades metabólicas para mejorar el bienestar de la población infantil.
Sigue leyendo