VOLVER

Share

Investigadores de la US crean un sistema de detección inmediata de personas armadas gracias a la Inteligencia Artificial

El proyecto DISARM, desarrollado por un equipo coordinado desde las universidades de Sevilla y la de Castilla-La Mancha, será capaz de evitar tiroteos y amenazas en lugares públicos y privados incorporando el deep learning a cámaras de videovigilancia. Los productos ya están disponibles en el mercado y diversas empresas de sectores de seguridad, visión por computador y robótica han mostrado interés con el fin de aplicarlos a sus sistemas. 

Fuente: Universidad de Sevilla


Sevilla |
09 de noviembre de 2023

Investigadores de la Universidad de Castilla-La Mancha y de la Universidad de Sevilla han diseñado un sistema avanzado de seguridad basado en la Inteligencia Artificial (IA) capaz de detectar de inmediato la presencia de individuos armados y de comportamientos agresivos para evitar tiroteos en lugares públicos y privados.

El proyecto DISARM (Detección Automática de Individuos Armados) ha sido financiado por la Agencia Estatal de Investigación (AEI) dentro de la convocatoria Pruebas de Concepto 2021 con fondos del Plan de Recuperación, Transformación y Resiliencia de la Unión Europea. Una Prueba de Concepto es un estado de maduración de una tecnología o conocimiento donde, por primera vez, se estudia su viabilidad en el mercado, más allá de un resultado científico. Por tanto, su ejecución sirve para acelerar la transferencia de conocimiento y los resultados generados en proyectos de investigación a un nivel competitivo.

El proyecto DISARM (Detección Automática de Individuos Armados) ha sido financiado por la Agencia Estatal de Investigación (AEI).

“Utilizamos imágenes y vídeos de circuitos cerrados de televisión para detectar la presencia de personas armadas y comportamientos agresivos analizando sus poses. Esta tecnología emplea técnicas de entrenamiento específicas y los últimos modelos de deep learning para identificar de manera precisa a individuos que puedan representar una amenaza en entornos públicos y privados”, explican los investigadores Óscar Déniz, responsable del equipo VISILAB de la Universidad de Castilla-La Mancha, y Juan Antonio Álvarez, director del grupo DeepKnowledge de la Universidad de Sevilla.

Dentro de las aplicaciones de la IA, deep learning es una técnica de aprendizaje automático basada en el modelo de red neuronal: se apilan decenas o incluso cientos de capas de neuronas para aportar mayor complejidad al establecimiento de reglas. Estas redes neuronales intentan emular el comportamiento del cerebro humano, lo que permite al sistema ‘aprender’ a partir de grandes cantidades de datos.

Empresas de seguridad interesadas en adquirir el sistema

La innovación principal del proyecto DISARM radica en su capacidad para mejorar significativamente la detección de personas armadas en circuitos cerrados de televisión mediante videovigilancia. “A diferencia de otros sistemas existentes -subrayan sus creadores-, nuestra tecnología utiliza algoritmos de deep learning para analizar tanto la presencia de armas como comportamientos agresivos mediante poses, lo que permite una detección más eficaz y precisa de amenazas potenciales. Esto proporciona una mayor seguridad en lugares públicos, empresas, escuelas y otros entornos donde se necesita un alto nivel de seguridad”.

Los productos generados en DISARM ya están disponibles en el mercado y diversas empresas de sectores de seguridad, visión por computador y robótica los han adquirido o han mostrado interés en comprarlos con el fin de aplicarlos a sus sistemas. El equipo investigador también dispone ya de datasets (base compleja de datos) que permiten entrenar los modelos de una manera fiable y precisa.


Share

Últimas publicaciones

Administrar hierro intravenoso en el embarazo reduce la probabilidad de anemia materna y mejora la salud neonatal
Granada | 19 de enero de 2026

Un ensayo denominado FAIR-Trial y realizado en tres hospitales de Pakistán concluye que la  administración de hierro intravenoso aumenta la concentración de hemoglobina antes del parto. La investigiación se ha realizado con la participación de 600 mujeres embarazadas con deficiencia de hierro no anémica. Los resultados se han publicado en The Lancet Haematology.

Sigue leyendo
Diseñan un método rápido para analizar las propiedades saludables del comino negro
Córdoba | 17 de enero de 2026

Un equipo de investigación del Instituto de Agricultura Sostenible de Córdoba ha validado un sistema para estudiar semillas enteras en segundos, sin productos químicos y con similar fiabilidad que las técnicas tradicionales. El avance acorta el proceso de selección necesario para obtener variedades con mayor contenido en compuestos saludables.

Sigue leyendo
Demuestran que el fármaco Ibudilast protege contra la pérdida de neuronas en ratones con Parkinson
Sevilla | 16 de enero de 2026

Un equipo de investigación del Instituto de Biomedicina de Sevilla (IBiS) y de la Universidad de Sevilla ha demostrado que el fármaco Ibudilast protege frente a la pérdida de neuronas dopaminérgicas en un modelo murino de la enfermedad de Parkinson. El estudio, publicado en la revista 'Journal of Neurochemistry', abre nuevas vías para el desarrollo de terapias modificadoras de esta patología neurodegenerativa.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido