VOLVER

Share

La inteligencia artificial ayuda a descifrar la función de proteínas desconocidas

El nuevo trabajo de investigadores del CSIC permite la aplicación masiva de estos métodos de IA de aprendizaje profundo para entender estas moléculas en organismos menos estudiados, identificar nuevas funciones de genes y explorar qué proteínas pueden ser de interés biomédico y biotecnológico con mayor precisión. El estudio, publicado en la revista Nuc Acids Red Genomics and Bioinformatics, sienta las bases del uso de la IA en otras aplicaciones.

Fuente: Agencia SINC


España |
04 de septiembre de 2024

Investigadores del Centro Andaluz de Biología del Desarrollo (CABD) y del Instituto de Biología Evolutiva de Barcelona (IBE) han puesto en marcha nuevas técnicas avanzadas de inteligencia artificial para el análisis de proteínas.

El equipo ha conseguido demostrar que se puede identificar y describir lo que hacen las proteínas en detalle, incluso sin información previa. Este trabajo permite la aplicación masiva de estos métodos para entender las proteínas en organismos menos estudiados, identificar nuevas funciones de genes y explorar qué proteínas pueden ser de interés biomédico y biotecnológico con mayor precisión que los métodos tradicionales.

En la naturaleza la información contenida en el ADN se transforma en proteínas, que son las que actúan en las células. En este proyecto, liderado por los investigadores del CABD, Ildefonso Cases y Ana M. Rojas junto a Rosa Fernández, del IBE, se han empleado dos métodos basados en el aprendizaje profundo (deep learning) para analizar proteínas en varios organismos modelo, como la levadura, el ratón o la mosca de la fruta.

El estudio está liderado por investigadores del Centro Andaluz de Biología del Desarrollo.

La exploración mostró que los modelos de lenguaje (Transformers) son más efectivos que las redes convolucionales, proporcionando información más precisa e informativa sobre las proteínas de las especies estudiadas. Además, los modelos de lenguaje pueden recuperar información funcional a partir de datos de ARN (molécula que lleva las instrucciones del ADN para fabricar proteínas en las células).

“Estamos en un momento crítico debido a la enorme cantidad de proyectos de secuenciación de organismos desconocidos que producen millones de secuencias, de las que no podemos predecir su función usando métodos tradicionales”, explica Rojas. Este trabajo abre nuevas vías de investigación relacionadas con una mayor precisión en los modelos de análisis y clasificación de funciones de las proteínas.

Este nuevo estudio, publicado en la revista Nuc Acids Red Genomics and Bioinformatics, sienta las bases del uso de la IA en otras aplicaciones.

Biología computacional

“Estas herramientas de aprendizaje profundo permitirán abordar nuevos problemas en biología computacional. Estamos trabajando en la aplicación de estas técnicas para otros objetivos, como promotores a la carta, anotación de grupos de células en single-cell, o ingeniería de proteínas”, dice la investigadora del IBE

Por su parte, Rosa Fernández, hace hincapié en que esta investigación es fundamental en el campo de la biodiversidad, donde cada día se publican nuevas secuencias de proteínas cuya función es desconocida, lo cual permite abordar el problema de anotación del proteoma oscuro (Dark Proteome).

“Para ello estamos usando estas herramientas en miles de transcriptomas del reino animal, trabajo que se encuentra en revisión. Cuanta más información tengamos de las funciones de secuencias nuevas, más rápido descifraremos los mecanismos moleculares de procesos biológicos que se dan en el ámbito de la biodiversidad y regeneración con potenciales aplicaciones biotecnológicas (industria alimentaria) y biomédicas (industria farmacéutica)”, concluye la investigadora.


Share

Últimas publicaciones

Desarrollan un tratamiento de purines de cerdo que reduce la emisión de gases de efecto invernadero
Granada | 25 de agosto de 2025

Un equipo de investigación de la Estación Experimental el Zaidín de Granada (CSIC), del Centro Tecnológico EnergyLab y de la Universidad de Copenhague ha aplicado una solución a partir de residuos vegetales para reducir la liberación de sustancias nocivas de los desechos de la ganadería porcina. El hallazgo ofrece una alternativa al uso de productos químicos agresivos y abre la puerta a nuevas formas de gestionar el estiércol con menor impacto ambiental.

Sigue leyendo
Confirman que el aceite de acebuchina disminuye el daño ocular producido por la hipertensión arterial
Sevilla | 23 de agosto de 2025

Un equipo de investigación de la Universidad de Sevilla ha confirmado que este aceite reduce las alteraciones del ojo provocadas por los niveles elevados de la presión sanguínea. Los resultados del estudio con células y animales validan su potencial uso terapéutico en enfermedades oftálmicas.

Sigue leyendo
Mejoran las cualidades de la paja de trigo para desarrollar lubricantes industriales más sostenibles
Huelva | 20 de agosto de 2025

Un equipo de investigación de la Universidad de Huelva ha obtenido un tipo de celulosa que mejora las propiedades de las grasas industriales y logra pavimentos más resistentes al calor y al desgaste. Así, modifican un residuo agrícola y lo transforman en un material versátil, ecológico y muy útil para el mercado.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido