La inteligencia artificial predice con precisión la temperatura media de agosto en el sur de la península
Una nueva metodología desarrollada por la Universidad de Córdoba que utiliza técnicas de Inteligencia Artificial y que ha sido entrenada y validada con datos de los últimos 70 años permite predecir con precisión y con un mes de antelación la temperatura media del aire a dos metros de la superficie.
Fuente: Universidad de Córdoba
Conocer la temperatura con antelación se ha convertido en un factor decisivo cuando se aproximan los meses estivales. A la hora de programar unas vacaciones, planificar el suministro de energía o diseñar campañas de prevención, saber con anterioridad y con cierto grado de exactitud cuánto marcará el mercurio puede ser de gran utilidad, especialmente en zonas del sur en las que durante el verano el calor extremo y las noches tropicales están dejando de ser un fenómeno esporádico.
Precisamente, un trabajo de la Universidad Córdoba (UCO) ha conseguido desarrollar una nueva metodología capaz de predecir con precisión la temperatura media del mes de agosto en el Sur de la Península Ibérica. La metodología, que combina técnicas de Inteligencia Artificial y de agrupamiento, ha sido entrenada y validada con datos de reanálisis de los últimos 70 años obtenidos por modelos matemáticos que se nutren de observaciones procedentes de diversas fuentes de información, tales como satélites y radiosondas. Una vez entrenada, es capaz de predecir la temperatura media del aire a dos metros de la superficie.
“Se trata de una metodología que tiene como objetivo crear modelos de Redes Neuronales Artificiales capaces de obtener mejores resultados que otras técnicas actuales y que, además, sean interpretables”, apuntan Antonio Manuel Gómez y David Guijo, coautores de la investigación,, ambos integrantes del grupo AYRNA de la Universidad de Córdoba e investigadores en la Escuela Politécnica Superior de la UCO.
Así funciona la metodología
Se realiza una especie de barrido (cada 0.25 grados latitud/longitud) seleccionando solo los puntos geográficos de interior de la zona sur de la Península. En cada uno de esos puntos se realizan las predicciones en el mes de agosto utilizando variables de entrada correspondientes al mes de julio, tales como la temperatura, componentes del viento o la presión media a nivel del mar. En total, se analizan 270 puntos distribuidos a lo largo del sur de la península y que son agrupados en seis sub-regiones con un comportamiento similar en cuanto a la temperatura del aire. Se trata de lo que en Inteligencia Artificial se denomina algoritmo de agrupamiento o ‘clustering’, mediante la que se obtienen grupos formados por los datos que comparten similitud, y que es de gran utilidad para mejorar la predicción.
Inteligencia artificial ‘interpretable’
Una de las principales ventajas de la metodología desarrollada, subraya el investigador Pedro Antonio Gutiérrez, es que se engloba dentro del campo de la Inteligencia Artificial Explicable, conocida como XAI por sus siglas en inglés.
Gracias a este tipo de herramientas el ser humano es capaz de interpretar cómo realiza las predicciones el sistema, ver cómo interaccionan entre sí las distintas variables y comprender la relación causa-efecto entre ellas, en contraste con otros métodos de ‘caja negra’ en los que ni siquiera las personas que los han diseñado son capaces de entender el motivo por el que el modelo de Inteligencia Artificial realiza una determinada predicción. Tal y como explica el Catedrático Emérito e investigador principal del grupo AYRNA, César Hervás, estos modelos son cada vez más demandados, ya que permiten interpretar interacciones y deducir, por ejemplo, las causas por las cuales puede fluctuar la temperatura en una zona determinada.
El trabajo, en el que también han participado las Universidades de Alcalá y de East Anglia (Reino Unido), se integra dentro del proyecto de investigación ORCA-DEEP, que aborda el estudio de problemas relacionados con la meteorología y el medio ambiente a través de nuevos métodos de Inteligencia Artificial.
Referencia bibliográfica:
Antonio Manuel Gómez-Orellana, David Guijo-Rubio, Jorge Pérez-Aracil, Pedro Antonio Gutiérrez, Sancho Salcedo-Sanz, César Hervás-Martínez. One month in advance prediction of air temperature from Reanalysis data with eXplainable Artificial Intelligence techniques. Atmospheric Research, 2023, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2023.106608
Últimas publicaciones
Las excavaciones desarrolladas por la Universidad de Málaga han permitido conocer cómo se organizaba un inmueble de la época, en el que se ha observado la existencia de sectores de taller, dedicados a actividades metalúrgicas, así como otros de almacenamiento o de carácter doméstico. Asimismo, han constatado por primera vez, la existencia de restos romanos alejados del núcleo fenicio.
Sigue leyendoInvestigadores del Hospital Regional Universitario de Málaga y del Hospital Universitario Virgen de la Victoria publican un estudio que permite mejorar la respuesta tumoral a través de radioterapia de precisión y prolongar los beneficios clínicos de la inmunoterapia al evitar o retrasar la progresión del cáncer de pulmón y melanoma metastásico.
Sigue leyendoLa iniciativa DOCU-CLIM, que cuenta entre sus miembros con el grupo investigador de la UPO Vareclim sobre la Variabilidad y Reconstrucción del Clima, reúne en una plataforma única datos sobre el pasado del clima en la Tierra de todo el mundo. La investigación paleoclimática resulta fundamental para entender sus dinámicas actuales, sobre todo en un contexto de crisis climática como el que vivimos.
Sigue leyendoPolítica de cookies
Las cookies necesarias son absolutamente esenciales para que el sitio web funcione correctamente. Esta categoría solo incluye cookies que garantizan funcionalidades básicas y características de seguridad del sitio web. Estas cookies no almacenan ninguna información personal.
Las cookies de rendimiento se utilizan para comprender y analizar los índices de rendimiento clave del sitio web, lo que ayuda a brindar una mejor experiencia de usuario a los visitantes.
Las cookies analíticas se utilizan para comprender cómo los visitantes interactúan con el sitio web. Estas cookies ayudan a proporcionar información sobre métricas, el número de visitantes, la tasa de rebote, la fuente de tráfico, etc.
Las cookies publicitarias se utilizan para proporcionar a los visitantes anuncios y campañas de marketing relevantes. Estas cookies rastrean a los visitantes en los sitios web y recopilan información para proporcionar anuncios personalizados.