Mejoran la resolución de problemas en el control de plantas termosolares con inteligencia artificial
Un equipo de investigación de la Universidad de Sevilla ha aplicado un modelo basado en coaliciones que reduce el tiempo de cómputo en la resolución de problemas de un tipo de colectores solares. El método propuesto permite minorar los fallos y predecir con mayor precisión las necesidades de configuración para obtener un mayor rendimiento de los sistemas.
Un equipo de investigación de la Universidad de Sevilla, ubicado en ubicado en el Parque Científico Tecnológico Cartuja, la Universidad Politécnica de Cataluña y la Universidad de los Andes de Colombia ha validado en la Plataforma Solar de Almería una nueva metodología que mejora el tiempo de cálculo en la resolución de problemas de los colectores solares. De esta manera, se logran reducir los recursos necesarios para su correcto funcionamiento.
Para maximizar la producción de energía eléctrica y minimizar el coste, las plantas solares utilizan modelos de control predictivo (MPC) en el manejo de los colectores. Con este sistema se predice el comportamiento que deben tener y se genera la configuración óptima para cada situación ajustando los ángulos de inclinación, la orientación, la potencia o la temperatura.
El modelo de control que proponen los investigadores se basa en la descentralización del campo incluyendo una técnica matemática y estadística llamada asistencia de dinámica de población, basada en la idea de que las máquinas pueden funcionar como entidades individuales que interaccionan entre sí y con su entorno, de manera similar a los seres vivos. En el artículo ‘Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance’ publicado en la revista Applied Energy los expertos analizan y optimizan la interacción de los controladores en los sistemas mejorando su eficiencia, reduciendo los tiempos de espera y ampliando la capacidad de respuesta.
Frente a los habituales sistemas de predicción que agrupan a todos los colectores de una misma planta, los expertos proponen que cada uno funcione de manera independiente, aunque conectados y comunicados con los demás.
Así, cada problema que se pueda plantear se reduce en pequeños subproblemas que se resuelven de una manera más rápida. Esto hace que no sean necesarios grandes sistemas de computación, reduciendo, al mismo tiempo, los costes de producción. “La idea es dividir el campo total de colectores en subsistemas más pequeños con un controlador local cada uno. Estos gestionan fallos individuales y se agrupan en coaliciones con los demás subsistemas creados, compartiendo sus respuestas ante la incidencia. Con esto se consigue una solución centralizada, pero de manera descentralizada”, indica a la Fundación Descubre el investigador de la Universidad de Sevilla Eduardo Fernández Camacho, autor del artículo.
A grandes problemas, pequeñas soluciones
Los colectores solares son dispositivos que aprovechan la luz del sol y la convierten en energía térmica utilizable para producir electricidad. Los cilindroparabólicos utilizados en los ensayos están compuestos por una serie de espejos parabólicos dispuestos en forma de cilindro. Los rayos del sol se concentran en un punto central a lo largo de un tubo que contiene un fluido que se calienta, normalmente agua o aceite.
Son controlados por sistemas autónomos que requieren de una configuración específica para obtener el máximo rendimiento. Pero estos parámetros deben cambiar en función de las circunstancias climáticas, la demanda o el estado físico del propio colector. Aplicar modelos predictivos hace que los controladores anticipen la configuración necesaria en cada momento. El principal problema es que los sistemas requieren amplios recursos computacionales para optimizar el proceso. Por eso, al reducir el proceso de cálculo a entidades locales, en vez de tratar la situación en una escala global, se mejoran los resultados
Partida ganadora
Además, los expertos incluyen los juegos evolutivos en la metodología. Se trata de una técnica de optimización, basada en la teoría de juegos, que afina los parámetros de un MPC en la planta solar mediante la simulación de escenarios de juego con diferentes configuraciones que compiten entre sí. La que ‘gana la partida’ genera nuevas configuraciones en la siguiente ‘mano’. Este proceso se repite varias veces hasta que el sistema encuentra la configuración más óptima. Esta técnica permite considerar las variaciones diarias y estacionales de la radiación solar, la temperatura o humedad, que afectan a la producción de energía eléctrica. De esta manera, se mejora considerablemente la eficiencia y rentabilidad de las plantas.
Los expertos proponen probar la metodología en plantas solares mayores, ya que las ventajas de este enfoque coalicional con respecto al método centralizado se hacen más evidentes a medida que la central es más grande.
La investigación se ha financiado mediante el proyecto ‘OCONTSOLAR’ del programa H2020 del Consejo Europeo de Investigación.
Referencias
Ana Sánchez Amores, Juan Martínez Piazuelo,José M. Maestre, Carlos Ocampo Martinez, Eduardo F. Camacho y Nicanor Quijano. ‘Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance’. Applied Energy.
Más información:
#CienciaDirecta, agencia de noticias de ciencia andaluza, financiada por la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, con la colaboración de la Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia e Innovación.
Teléfono: 958 63 71 99. Extensión 205
Documentación adicional
El equipo de la Universidad de Sevilla responsable del estudio.
Últimas publicaciones
Talleres, rutas, jornadas y exposiciones organizados por 185 instituciones en las 8 provincias han conformado la oferta de esta edición, en la que han participado 28.062 personas.
Sigue leyendoUn equipo de investigación de la Universidad de Málaga ha verificado el uso conjunto de tres cepas de Pseudomonas, un tipo de microorganismo, para que la planta no sufra con la subida del nivel térmico que conlleva el aumento de temperatura ambiental. Los expertos ponen a disposición de los agricultores una herramienta que lucha contra patógenos, al mismo tiempo que protege contra el calor.
El Ayuntamiento de Sevilla ha acogido el II Consejo de alcaldes de la Comunidad de Ciudades Ariane (CVA), un evento clave para la cooperación entre ciudades en el ámbito espacial europeo y que ha servido para hacer entrega del testigo de la presidencia a Fabian Jordan, presidente de Mulhouse Alsace Agglomération y encargado de ejercer la Presidencia de Ciudades Ariane en 2025.
Sigue leyendo