Muestran la conductividad eléctrica de un nanotubo de carbono con moléculas de espín cruzado en su interior
Investigadores de la Universidad de Sevilla y el Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) han logrado por primera vez encapsular las llamadas ‘moléculas de espín cruzado’ dentro de nanotubos de carbono. Estas moléculas pueden cambiar su espín mediante estímulos como la temperatura, un hecho relevante para el desarrollo de dispositivos espintrónicos y en nanoelectrónica.
Fuente: Agencia SINC
Los dispositivos electrónicos se reducen cada vez más y los científicos no dejan de miniaturizar sus componentes. La demanda de procesos rápidos y eficientes para conseguirlo no deja de crecer, y una solución podría estar en la espintrónica, una tecnología emergente que explota tanto la carga del electrón como su espín (momento angular intrínseco de las partículas).
En este contexto, investigadores del Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) y la Universidad de Sevilla acaban de publicar en la revista Nature Communications un estudio donde muestran por primera vez la conductividad eléctrica de un único nanotubo de carbono con moléculas de espín cruzado en su interior.
En general, las moléculas magnéticas podrían dar una nueva vuelta de tuerca a la electrónica convencional. En concreto, las moléculas de espín cruzado (spin-crossover, SCO, en inglés) son una familia de unidades funcionales de dimensión cero (0D) que presentan un cambio de espín radical desencadenado por un cambio electroestructural, activable por estímulos externos como la luz, la presión o la temperatura.
Este interruptor de espín confiere a las moléculas SCO excelentes capacidades y funcionalidades para su aplicación en la nanoelectrónica. Sin embargo, su carácter aislante ha impedido que estas moléculas se exploten plenamente. Algunos grupos de investigación han incrustado moléculas SCO en matrices de un material conductor, pero los resultados no son totalmente compatibles con los requisitos de los dispositivos a nanoescala.
El poder de manipular la materia a la nanoescala
Un sistema innovador para incorporar eficazmente moléculas SCO en materiales conductores es introducirlas dentro de nanotubos de carbono. Los nanotubos de carbono son materiales unidimensionales (1D), resistentes, ligeros y, lo que es más importante, son mini-hilos que conducen bien la electricidad, con un diámetro de 1 a 5 nanómetros y pueden medir hasta centímetros de longitud
Los investigadores han encapsulado por primera vez moléculas SCO basadas en el elemento hierro (Fe) dentro de nanotubos de carbono (SWCNT). Los nanotubos actúan como troncos conductores que transportan, protegen y detectan el estado de espín de las moléculas SCO, y superan de este modo, su intrínseco carácter aislante.
Los autores estudiaron el transporte de electrones a través de nanotubos de carbono individuales, incrustados en pequeños nano-transistores mediante dielectroforesis. Así encontraron un cambio en la conductividad eléctrica del nanotubo, que viene modificada por el estado de espín de las moléculas SCO dentro encapsuladas. La transición entre los dos estados de conducción es provocada por un interruptor térmico que resulta no ser simétrico: la temperatura del punto de transición no es el mismo bajando que subiendo el termómetro.
Este hecho abre una histéresis (tendencia de un material a conservar una de sus propiedades sin el estímulo que la ha generado) que no se presenta en las muestras cristalinas, y surgen entonces interesantes aplicaciones potenciales para este sistema: «Estos sistemas son como mini elementos de memoria a escala nanométrica, ya que presentan un ciclo de histéresis con el cambio de temperatura. También podrían servir como filtro de espín (un requerimiento de los dispositivos espintrónicos) porque el nanotubo ‘siente’ si la molécula tiene o no espín», comenta Enrique Burzurí, uno de los autores de IMDEA Nanociencia.
Los cálculos teóricos respaldan los experimentos
Los resultados experimentales están respaldados con cálculos teóricos realizados por investigadores de la Universidad de Sevilla. Durante el proceso de conmutación, los orbitales de las moléculas SCO cambian y también su hibridación con el nanotubo de carbono, lo que a su vez modifica la conductividad eléctrica de éste último.
Las moléculas SCO en su estado de bajo espín tienen una interacción más fuerte con los nanotubos; les resulta más difícil cambiar su estado y esto se traduce en un ‘salto’ en la conductividad del nanotubo a una determinada temperatura, que depende del estado de espín inicial.
Según los investigadores, esta primera encapsulación de moléculas SCO dentro de nanotubos de carbono es un resultado de investigación fundamental que ayuda a comprender el comportamiento de estas moléculas cuando están confinadas en espacios muy pequeños, y proporciona un sólido revestimiento para su lectura y posicionamiento en nanodispositivos.
Los autores esperan que este material híbrido multidimensional (0D-1D) pueda aprovechar las mejores propiedades de los materiales que lo constituyen, explotando el estado de espín como un grado de libertad adicional. Este minúsculo cable e interruptor puede producirse a escala preparatoria y podría representar un paso relevante en el desarrollo de sistemas magnéticos a nanoescala.
Referencia:
Julia Villalva, Aysegul Develioglu, Nicolas Montenegro-Pohlhammer, Rocío Sánchez-de-Armas, Arturo Gamonal, Eduardo Rial, Mar García-Hernández, Luisa Ruiz-Gonzalez, José Sánchez Costa, Carmen J. Calzado, Emilio M. Pérez & Enrique Burzurí. “Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules”. Nature Communications, 2021.
Últimas publicaciones
Un equipo de investigación de la Universidad de Málaga ha evaluado a casi un centenar de estudiantes de entre 8 y 12 años para entender mejor los desafíos léxicos a los que se enfrentan aquellos con pérdida auditiva. Las expertas sugieren un enfoque basado en relaciones entre determinadas clases de palabras para mejorar su aprendizaje y que puedan estudiar en igualdad de condiciones que sus compañeros oyentes.
Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?
Sigue leyendoEl consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, ha presidido el Patronato celebrado en Sevilla. El Plan prevé el fomento además de la divulgación en el ámbito de la emergencia, la seguridad y la defensa, al tiempo que comenzarán los trabajos para la divulgación del trío de eclipses solares previstos en la Península para 2026, 2027 y 2028. La Fundación ha celebrado previamente el acto de reconocimiento de las personas y entidades Colaboradoras Extraordinarias de Descubre.