Nuevos materiales orgánicos para avanzar hacia la electrónica del futuro
Fuente: Sinc

La investigadora Iratxe Arrechea en el Laboratorio de Fabricación y Caracterización de Transistores de Efecto de Campo. / UMA
La electrónica del futuro cada vez está más cerca. Investigadores del Laboratorio de Fabricación y Caracterización de Transistores de Efecto de Campo de la Universidad de Málaga (UMA), liderados por Rocío Ponce, están desarrollando nuevos materiales orgánicos que permitan una tecnología económica, plástica y sostenible que sustituya a la actual, basada en el silicio. En concreto,trabajan en la caracterización físico-química de estos materiales y estudian su comportamiento en componentes electrónicos.
“Nuestro objetivo es lograr dispositivos más eficientes y flexibles, compatibles con el medio ambiente”, afirma Ponce, “y buscamos suplantar los materiales inorgánicos, hasta ahora los más extendidos en el mercado, que tienen menor procesabilidad y son más costosos”.
En este contexto el equipo ha desarrollado un “sistema muy eficiente y novedoso como semiconductor tipo n (transporta cargas negativas), que ha sido reconocido por la revista Angewandte Chemie (una de las tres publicaciones de mayor impacto en el área de Química), donde aparece como back cover o artículo destacado en la contraportada. Investigadores de la South University of Science and Technology en China también participan en el estudio.
“Hemos creado una estructura molecular rígida compuesta por grupos ricos y grupos deficientes en electrones. Tras modular las propiedades electrónicas del sistema, hemos logrado semiconductores tipo n que, debido a su ‘planaridad molecular’ presentan un transporte de carga muy eficiente”, explica Ponce, quien también destaca que este nuevo material puede usarse como unidad estructural para conseguir otros. Las moléculas implicadas son hidrocarbruros aromáticos ‘tipo escalera’, con hasta 15 anillos y cinco grupos imida
Superar la rigidez de los inorgánicos
Este paso adelante se traduce en una electrónica biodegradable, basada en sistemas plásticos y transparentes, además de ser capaz de adaptarse a cualquier superficie. “Esta es la principal ventaja, que supera la rigidez de los inorgánicos, pudiendo crear dispositivos que se pueden doblar o poner en la mano”, aclara.
Aunque ya hay dispositivos orgánicos en el mercado –por ejemplo, el sector militar de Estados Unidos trabaja con ellos y, además, se utilizan en pantallas comerciales–, el siguiente paso para su implantación es mejorar su ciclo de vida, que, tal y como asegura Ponce, actualmente es más corto que el de los dispositivos fabricados con materiales inorgánicos.
“Lo que sí es una realidad es la impresión de circuitos a partir de impresoras modificadas que, en vez de tinta, utilizan una disolución de materiales orgánicos”, aclara la investigadora, que cuenta con varios reconocimientos en su carrera, como el Premio Jóvenes Investigadores 2015 de la Real Sociedad Española de Química en 2015 y la beca ‘L’Oréal-UNESCO Por las Mujeres en la Ciencia.
Referencia bibliográfica:
Yingfeng Wang+, Han Guo+, Shaohua Ling, Iratxe Arrechea-Marcos, Yuxi Wang, Juan Teodomiro López Navarrete, Rocio Ponce Ortiz, Xugang Guo. «Ladder-Type Heteroarenes: Up to 15 Rings with Five Imide Groups». Angewandte Chemie 56, 1 – 7, 2017.
Últimas publicaciones
Un equipo de investigación de la Universidad de Córdoba y el Instituto de Agricultura Sostenible ha diseñado AquaCrop-IoT, una herramienta que combina cámaras, sensores y modelos de simulación para ofrecer recomendaciones hídricas según el estado del cultivo y las condiciones meteorológicas. El objetivo es obtener un gemelo digital de cada parcela que calcule en tiempo real la cantidad de agua que necesite.
Sigue leyendoEl grupo ATLAS de la Universidad de Sevilla participa en un estudio internacional que arroja nueva luz sobre la diversidad genética de la sociedad andalusí entre los siglos VIII y XI d. C y refuerza la relevancia histórica del dolmen como espacio sacro usado a lo largo del tiempo.
Un equipo de investigación de la Universidad de Almería y la Universidad Nacional de Mar del Plata en Argentina ha encapsulado proteínas activas extraídas de los residuos de la industria pesquera. Con esta forma esférica, mantienen su actividad y estabilidad durante más de dos meses para emplearse como base en quitamanchas o nutrición animal.
Sigue leyendo

