Predicen terremotos con cerca de un 80% de fiabilidad
Fuente: Universidad de Sevilla
Miembros del grupo de grupo de investigación Estructuras y Geotecnia de la Universidad de Sevilla, junto a investigadores del grupo de investigación Minería de datos y sistemas inteligentes de la Universidad Pablo de Olavide y del TGT-NT2 Labs de Chile, han diseñado un método científico de predicción de terremotos con una fiabilidad de entre un 70% y un 80%. Este diseño, basado en técnicas de minería de datos, permite predecir un movimiento sísmico con una semana de antelación, en el caso de la Península Ibérica, y cinco días en Chile.
“Nuestro sistema de predicción se basa en una red neuronal artificial en la cual una serie de datos de entrada, interconectados a través de ecuaciones, dan un resultado”, explica el profesor de la Universidad de Sevilla Antonio Morales, propulsor de esta técnica junto al profesor de la UPO Francisco Martínez y el científico chileno Jorge Reyes.
En la Península Ibérica han estudiado el Mar de Alborán y la zona oeste de la falla Azores-Gibraltar, mientras que en Chile la investigación se ha extendido a cuatro de las regiones con mayor actividad sísmica el país. La sismicidad de la Península Ibérica es moderada, sin embargo, Chile es el país con mayor actividad sísmica del mundo. Esto demuestra que esta técnica es válida zonas con propiedades sísmicas y tectónicas diferentes.
“Lo que destaca de nuestro sistema es que hemos sistematizado un problema científico. Además, la tasa de acierto es muy alta para este tipo de problemas. La ventana temporal varía entre cinco y siete días. La incertidumbre espacial queda limitada a la amplitud de cada zona”, afirma el Dr. Morales.
Actualmente, la metodología se está depurando con datos de Japón. Un país donde el riesgo sísmico es muy elevado debido a su sismicidad, densidad de población y riqueza económica. Además, están desarrollando una página web en la que se podrán consultar las predicciones para la Península Ibérica en tiempo real.
Artículos científicos:
Pattern recognition to forecast seismic time series
Neural networks to predict earthquakes in Chile
Earthquake prediction in seismogenic areas of the Iberian Peninsula based on
Últimas publicaciones
Un equipo de la Universidad de Córdoba en colaboración con otras entidades y equipos de investigación de España y Portugal, desarrolla un nuevo método que permite evaluar de manera sencilla el estado de calidad de las dehesas en función de una serie de buenas prácticas relacionadas con la biodiversidad, la productividad de los pastos o el manejo de la arboleda.
Sigue leyendoLa combinación de lluvias tardías, el nivel elevado del río y del mar y la influencia del dique de la Montaña del Río han ralentizado el desagüe de la marisma, que presenta aún un alto nivel de inundación, con un 47% de su capacidad. Esto favorecerá la reproducción de aves acuáticas y la regeneración de vegetación, pero también plantea retos como la proliferación de especies invasoras y de cianobacterias.
Sigue leyendoEl patronato, presidido por el consejero de Universidad, Investigación e Innovación y presidente de la entidad, José Carlos Gómez Villamandos, ha dado un firme respaldo al proceso de adaptación del nuevo estatus.
Sigue leyendo