Reducen la materia oscura de los CRISPR y vinculan este sistema inmune de bacterias con sus proteínas de membrana
Un equipo de investigación del Centro Andaluz de Biología del Desarrollo (CABD) ha analizado más de 68.000 genomas de bacterias superresistentes para explicar por qué algunas de ellas tienen sistemas de vacunación CRISPR-Cas frente a virus bacteriófagos. El hallazgo supone un avance para una pregunta crucial en la evolución de bacterias y de utilidad en fagoterapia, es decir, el uso de bacteriófagos para tratar infecciones bacterianas.
Fuente: Universidad Pablo de Olavide / CSIC Andalucía

Andrés Garzón, Alejandro Rubio y Antonio Moreno (de izquierda a derecha) y
Antonio Pérez Pulido (abajo) / Ana Bastos-CSIC
La resistencia de las bacterias a los antibióticos constituye una de las principales amenazas globales para la salud pública. Una de las estrategias para luchar contra estas bacterias superresistentes se basa en el uso de virus, llamados bacteriófagos, que resultan inocuos para las personas. El potencial de estos virus se conoce desde principios del siglo pasado, pero la presente resistencia a los antibióticos hace que sea una vía de investigación prioritaria en la actualidad. Ahora, el grupo de investigación UPOBioinfo, que desarrolla sus investigaciones en el Centro Andaluz de Biología del Desarrollo (CABD), ha descrito en un artículo publicado en la revista Science Advances una relación entre las proteínas presentes en la membrana de las bacterias y los sistemas de inmunidad CRISPR-Cas de resistencia a los virus. El trabajo ha sido desarrollado en colaboración con la Universidad de Mainz (Alemania) y el grupo de enfermedades infecciosas del Instituto de Biomedicina de Sevilla.
Los sistemas CRISPR-Cas, presentes en el 40% de las bacterias, permiten que éstas sean inmunes a virus bacteriófagos gracias a que los reconocen por su genoma; estos fragmentos de ADN que poseen algunas bacterias eran desconocidos en su mayoría –denominados por ello ‘materia oscura’–, es decir, no se sabía frente a qué las protegían. El análisis bioinformático llevado a cabo por los investigadores del CABD ha demostrado que esta materia oscura de los CRISPR sirve para reconocer virus bacteriófagos desconocidos hasta ahora, llegando a reducir la materia oscura CRISPR desde el 80% a tan solo el 15% en algunas de las especies.
Conocer mejor los mecanismos por los que las bacterias se defienden frente a los virus, y por qué unas disponen de ‘vacunas’ y otras no, puede ser clave para avanzar en la estrategia de usar los virus para combatir infecciones bacterianas. Por ello, investigadores del grupo UPOBioinfo han analizado más de 68.000 genomas de bacterias superresistentes como Acinetobacter baumannii, Pseudomonas aeruginosa o Klebsiella pneumoniae y han hallado una relación entre la membrana exterior de las bacterias y su capacidad de defensa frente a virus mediante CRISPR-Cas.
Esta nueva teoría denominada triada Membranoma-Fagos-CRISPR muestra que hay bacterias con proteínas exclusivas en su superficie que les permiten tener mayor ventaja en su medio, incluida la resistencia a los antibióticos, pero que pueden ser también la puerta de entrada a virus específicos. Para compensar esta debilidad las bacterias se dotan de sistemas CRISPR-Cas; todo ello explicaría el por qué estos sistemas de vacunación bacteriana no son universales. El equipo UPOBioinfo ha demostrado esta teoría en sistemas de inmunización CRISPR-Cas en cuatro de las seis las bacterias estudiadas.
De este modo el hallazgo supone un avance para una pregunta crucial en la evolución de bacterias y de utilidad en fagoterapia: ¿por qué unas bacterias tienen sistemas de vacunación frente a virus y otras no? Pero, sobre todo, el conocimiento de los detalles de la guerra entre bacterias y virus bacteriófagos, permitirá luchar más eficientemente en el futuro frente a las infecciones causadas por bacterias superresistentes.
Sobre el CABD
El CABD se fundó en el año 2003 como el primer centro de investigación español especializado en el estudio de la Biología del Desarrollo. En 2017 el Departamento de Regulación Génica y Morfogénesis recibió la acreditación de Unidad de Excelencia María de Maeztu para el periodo 2017-2021 y ha sido ampliada para el CABD en su conjunto durante el periodo 2022-2025. Recientemente el CABD ha sido galardonado por la Academia de las Ciencias Sociales y Medio Ambiente de Andalucía con el Premio de Investigación, Innovación, Desarrollo y Empresa, en la categoría de ‘centros de investigación’.
El CABD, que se aloja en el edificio JA Campos Ortega, es un centro mixto cofinanciado por el Consejo Superior de Investigaciones Científicas (CSIC), la Junta de Andalucía y la Universidad Pablo de Olavide (UPO) de Sevilla. La edificación y el equipamiento fueron costeados con fondos de la Unión Europea.
El foco de la investigación se ha escogido para acoger y promover la prestigiosa escuela española de Biología del Desarrollo, que se ha ido extendiendo por diferentes laboratorios internacionales. Actualmente el centro lo ocupan grupos jóvenes y dinámicos trabajando en desarrollo embrionario utilizando modelos de ratón, varios modelos de pez, Xenopus, Drosophila, Caenorhabditis, organoides y sistemas computacionales. Otros grupos estudian procesos generales como control del ciclo celular en levaduras, regulación génica en bacterias y estrés oxidativo.
Referencia:
Rubio, A., Sprang, M., Garzón, A., Moreno-Rodriguez, A., Pachón-Ibáñez, M. E., Pachón, J., Andrade-Navarro, M. A., & Pérez-Pulido, A. J. (2023). Analysis of bacterial pangenomes reduces CRISPR dark matter and reveals strong association between membranome and CRISPR-Cas systems. Science Advances, 9(12). https://doi.org/10.1126/sciadv.add8911
Últimas publicaciones
Llevado a cabo por un equipo de investigación del Centro Andaluz de Biología del Desarrollo, el estudio abre nuevas posibilidades para comprender mejor la miopatía nemalínica y desarrollar terapias que contrarresten los efectos del exceso de hierro y el estrés oxidativo.
Sigue leyendoUn estudio de la Universidad de Córdoba ha desarrollado una herramienta para predecir, bajo diferentes condiciones de temperatura, el desarrollo de una de las principales bacterias de transmisión alimentaria, lo que permite estimar con mayor precisión la vida útil de estos alimentos.
Sigue leyendoUn equipo de investigación de la Universidad de Sevilla ha desarrollado una tecnología que higieniza el agua filtrando restos contaminantes y descomponiéndolos mediante el uso de energía solar. Tras ensayos en el laboratorio y en una lavandería de hospital, este estudio evalúa la rentabilidad y sostenibilidad de esta técnica para la gestión de residuos, al regenerar un bien finito como el agua empleando un recurso natural, en este caso la luz del Sol.