VOLVER

Share

Desarrollan un sistema inteligente que identifica el origen de la carne de cordero

Un equipo de investigación de las universidades de Sevilla y Huelva ha validado el uso de un algoritmo basado en parámetros químicos que permite a la industria cárnica realizar un seguimiento del producto hasta que llega a la mesa del consumidor. Este método mejora los procedimientos habituales, consistentes en visitas técnicas.


Huelva, Sevilla |
22 de septiembre de 2024

Un equipo de investigación de la Universidad de Sevilla y la Universidad de Huelva ha desarrollado un sistema ‘inteligente’ que identifica el sistema de alimentación que han recibido los corderos a partir de muestras de la carne de cordero. Este método alternativo a las visitas técnicas puede emplearse en la industria para realizar un seguimiento del producto de la granja a la mesa, así como para certificar la calidad para determinados tipos de carne.

Los expertos afirman que aunque este sistema se ha empleado con anterioridad en otros sectores, como la identificación del flujo de personas en las ciudades, se trata de la primera vez que se aplica inteligencia artificial como método de trazabilidad del cordero. “A partir de una muestra del producto podemos ver, incluso, qué han comido los animales”, explica a la Fundación Descubre el investigador de la Universidad de Sevilla Manuel García-Infante.

Los expertos emplearon análisis físicos, químicos y sensoriales en cada pieza de carne.

Normalmente, la trazabilidad de los productos cárnicos se lleva a cabo mediante inspecciones que cumplen su cometido. No obstante, los expertos señalan que este método presenta limitaciones como la falta de precisión, dado que nos registros manuales pueden ser inexactos, supone el rastreo manual de cada lote de carne y escasa información, es decir, la complejidad de obtener datos detallados sobre las condiciones de crianza, alimentación y procesamiento del producto.

Análisis físico, químico y sensorial

Por este motivo, en el artículo ‘Effectiveness of machine learning algorithms as a tool to meat traceability system. A case study to classify Spanish Mediterranean lamb carcasses’ publicado en la revista Food Control, los investigadores explican que la inteligencia artificial aporta una mayor precisión y eficiencia a la trazabilidad de la carne. Además, permite una identificación más exacta del origen y las características del producto a lo largo de la cadena de suministro.

Para comprobar la validez de la inteligencia artificial, los expertos identificaron mediante análisis físicos, químicos y sensoriales cada pieza de carne. Esto es, como ‘etiquetar’ los productos en función de tres parámetros. Primero, los compuestos que contiene, como las proteínas o los ácidos grasos, entre otros. Segundo, la parte física, que incluye la firmeza de la carne, su capacidad de retención de agua y su color. Por último, realizaron una prueba con panelistas entrenados que ayudaron a evaluar y analizar las características sensoriales del alimento, como su sabor, aroma y textura.

Carne de cordero

Carne de cordero. Foto:

Con estos datos, el equipo investigador elaboró distintas bases de datos y las probaron con seis algoritmos de inteligencia artificial para comprobar cuál identificaba mejor cada tipo de carne según sus propiedades y categorizaba su calidad en función de las mismas. Además, dividieron los tipos de carne en tres grupos: corderos lechales, alimentados con pasto natural y alimentados con pienso concentrado en establo. “En función de los datos físicos, químicos y sensoriales el sistema detecta qué ha comido el cordero. También nos hemos encontrado con casos en los que lo categoriza en función de lo que haya comido la madre”, añade José Luis Guzmán, investigador de la Universidad de Huelva y coautor del estudio.

Identificar y categorizar

Luego, los expertos evaluaron qué tipología de algoritmo funcionaba mejor con cada base de datos y determinaron que algoritmo de aprendizaje automático (machine learning) era el más efectivo. Este método consiste en ‘enseñar’ al sistema con una porción de una base de datos a identificar tipos de carnes, de modo que luego, sobre con la base de esa información, pueda clasificarlas por sí mismo.

Según los expertos, la forma de emplear este procedimiento en la industria sería mediante la instalación de un dispositivo que pueda realizar un análisis bioquímico in-situ. De este modo, se podrían analizar las piezas de carne en tiempo real.

Investigadores sistema inteligente cordero

Equipo de investigación AGR 273 ‘Nuevas Tecnologías de Mejora Animal y de Sus Sistemas Productivos’ de la Universidad de Sevilla.

El siguiente paso de los investigadores de los grupos ‘Nuevas Tecnologías de Mejora Animal y de Sus Sistemas Productivos de la Universidad de Sevilla y ‘Tecnología de la Producción Animal’ de la Universidad de Huelva es buscar otro tipo de datos que les permita mejorar la eficacia de este método. Asimismo, quieren probarlos con otro tipo de algoritmos. “Este trabajo ha sido una primera toma de contacto que nos ha aportado información técnica, pero podemos mejorarlo y desarrollar nuevas aplicaciones en las distintas fases de la cadena de producción”, explica García-Infante.

Este estudio ha sido financiado por el Instituto de Investigación y Formación Agroalimentaria y Pesquera de las Islas Baleares y el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.

Referencias

García-Infante, M., Castro-Valdecantos, P., Delgado-Pertiñez, M., Teixeira, A., Guzmán, J. L., & Horcada, A. (2024). Effectiveness of machine learning algorithms as a tool to meat traceability system. A case study to classify Spanish Mediterranean lamb carcasses. Food Control, 110604.

Más información:

#CienciaDirecta, agencia de noticias de ciencia andaluza, promovida por la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, con la colaboración de la Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia e Innovación.

Teléfono: 663 920 093

E-mail: comunicacion@fundaciondescubre.es



Share

Últimas publicaciones

Un proyecto de ciencia ciudadana revela que el uso del móvil entre los jóvenes andaluces supera las cuatro horas diarias en fin de semana
Andalucía | 07 de abril de 2025

Esta investigación, liderada por investigadores de las Universidades de Sevilla, Jaén y Cádiz y en la que participan 500 andaluces de entre 18 y 30 años, ha analizado el impacto del tiempo de pantalla en la salud física y emocional de los jóvenes y busca estrategias para fomentar hábitos más saludables. Estos datos subrayan la necesidad de abordar el uso excesivo del móvil como un factor de riesgo para el bienestar juvenil. Esta iniciativa forma parte del proyecto ‘Andalucía + ciencia ciudadana’, impulsado por la Consejería de Universidad, Investigación e Innovación y coordinado por Fundación Descubre y la Universidad Pablo de Olavide, que pretende potenciar la utilización de esta metodología entre distintos agentes de la región.

Sigue leyendo
Desarrollan un método rápido que emplea tecnología de infrarrojo para mejorar la seguridad alimentaria en el atún
Córdoba | 05 de abril de 2025

Un equipo de investigación del IFAPA ‘Alameda del Obispo’ (Córdoba) ha propuesto un procedimiento para identificar de forma instantánea histamina, un posible alérgeno y su concentración en la industria pesquera. Esta tecnología podría servir a las empresas y productores que controlan la calidad del pescado para evitar riesgos para la salud.

Sigue leyendo
Descubren biomarcadores fundamentales para detectar de forma temprana el Alzheimer en personas Down
Granada | 04 de abril de 2025

Científicos de la Universidad de Granada participan en un estudio internacional que ha identificado 15 proteínas en sangre que pueden funcionar como indicadores tempranos del desarrollo de la enfermedad. El síndrome de Down se asocia con un mayor riesgo de sufrir Alzheimer debido a la triplicación del gen APP en el cromosoma 21.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido