VOLVER

Share

Combinan imágenes en 3D e inteligencia artificial para diagnosticar el grado de afección del Párkinson

Un grupo de investigación de la Universidad de Córdoba desarrolla un algoritmo matemático para el diagnóstico de distintos estadios del Párkinson, una herramienta de apoyo a las decisiones médicas que podría ayudar a mejorar los tratamientos contra esta enfermedad. Según datos de la Organización Mundial de la Salud (OMS), afecta a 7 millones de personas en todo el mundo y durante la enfermedad del párkinson se produce una pérdida de densidad de las proteínas encargadas de transportar la dopamina, un neurotransmisor esencial en el control del movimiento. 

Fuente: Universidad de Córdoba


Córdoba |
09 de junio de 2021

Una nueva herramienta desarrollada por la Universidad de Córdoba en colaboración con la Unidad de Medicina Nuclear del Hospital Reina Sofía, que dirige el doctor Juan Antonio Vallejo, podría permitir al personal sanitario diagnosticar a partir de ahora distintos grados de afección del párkinson, una enfermedad que, según los datos que maneja la Organización Mundial de la Salud (OMS) afecta a 7 millones de personas en todo el mundo.

Un especialista examina una radiografía de cráneo en una imagen de archivo.

Hasta la fecha, según explica el investigador del grupo AYRNA Javier Barbero, «la mayoría de diagnósticos sólo distingue si el paciente padece o no esta enfermedad». El equipo de investigación ha desarrollado un sistema que permite especificar la fase en la que se encuentra, distinguiendo entre cuatro tipos de estadios diferentes en función de la gravedad.

Concretamente, esta nueva metodología combina inteligencia artificial y el uso de imágenes en tres dimensiones de la zona del cerebro en las que se produce la degeneración neuronal. Para ello, el equipo de investigación ha analizado voxel a voxel – el equivalente al pixel en 3D- más de medio millar de fotografías cerebrales de personas con síntomas compatibles con la enfermedad. El resultado es un algoritmo matemático que, tras haber procesado toda esta información, es capaz de estimar, una vez escaneada la imagen del cerebro del paciente, el grado de afectación de la enfermedad en función del daño neuronal.

«La nueva herramienta realiza esta estimación de forma automática, un diagnóstico inicial que, por supuesto, luego tendrá que certificar el personal médico con las imágenes delante», explica Pedro Antonio Gutiérrez, otro de los autores del estudio junto a César Hervás, Antonio Durán y Julio Camacho.

En este sentido, tal y como destaca el investigador, el algoritmo es capaz de determinar «qué zonas escaneadas del cerebro son las más importantes y, por tanto, en las que el personal especializado debe centrar su atención para confirmar el diagnostico», pero, ¿por qué hay zonas más importantes que otras?

La respuesta: en la dopamina

Durante la enfermedad del párkinson se produce una pérdida de densidad de las proteínas encargadas de transportar la dopamina, un neurotransmisor esencial en el control del movimiento. Precisamente, estas imágenes en 3D son capaces de detectar la densidad de estas proteínas y establecer los lugares cerebrales en las que se encuentran, por ello, su localización ofrece pistas sobre la gravedad de la enfermedad.

El trabajo, de esta forma, «no busca sustituir el criterio del personal especializado sino ofrecer un apoyo en la toma de decisiones médicas», explica César Hervás, investigador principal del grupo AYRNA. En cualquier caso, establecer con mayor exactitud la fase en la que se encuentra esta afección podría ayudar a ajustar la cantidad de medicación necesaria y determinar, así, un mejor tratamiento para una enfermedad crónica que, si bien no tiene cura como tal a día de hoy, ha mejorado notablemente su pronóstico gracias al avance de la neurología y al desarrollo de nuevos fármacos.

El proceso, además, ha sido validado a través de dos metodologías diferentes, publicadas ambas en revistas científicas. La primera de ellas emplea técnicas clásicas de clasificación ordinal, mientras que la segunda se basa en las denominadas redes neuronales convolucionales, un tipo de modelos de inteligencia artificial muy efectivos para tareas de visión como la clasificación de imágenes.

Referencias bibliográficas:

A.M. Durán-Rosal, J. Camacho-Cañamón, P.A. Gutiérrez, M.V. Guiote-Moreno, E. Rodríguez-Cáceres, J.A. Vallejo-Casas y C. Hervás-Martínez. «Ordinal classification of the affectation level of 3D-images in Parkinson diseases», Scientifc Reports, Vol. 11, marzo, 2021, pp. 7067. JCR(2019): 3.998 Posición: 17/71 (Q1) Categoría: MULTIDISCIPLINARY SCIENCES. DOI:10.1038/s41598-021-86538-y

Javier Barbero-Gómez, Pedro Antonio Gutiérrez Víctor, Manuel Vargas, Juan Antonio Vallejo-Casas, César Hervás-Martínez. An ordinal CNN approach for the assessment of neurological damage in Parkinson’s disease patients. Expert Systems with Applications. . JCR(2019): 5.452Posición: 2/83 (Q1) Categoría: OPERATION RESEARCH & MANAGEMENT SCIENCE. DOI: 10.1016/j.eswa.2021.115271


Share

Últimas publicaciones

Descubre organizará más de 300 Cafés con Ciencia en Andalucía en los próximos 12 meses para acercar la investigación a la ciudadanía
Andalucía | 26 de julio de 2024

En su 15ª edición, esta actividad de divulgación científica contará con encuentros sobre salud mental, Cafés dedicados al colectivo LGTBI y un Café con Ciencia para conmemorar el Año Cajal dedicado a Ramón y Cajal. La organización de los Cafés con Ciencia se puede solicitar por correo electrónico cafeconciencia@fundaciondescubre.es hasta el 15 mayo de 2025.

Sigue leyendo
Patentan pastillas de soja biodegradables para el abono controlado de cultivos
Huelva, Sevilla | 25 de julio de 2024

Un equipo de investigación de las universidades de Sevilla y Huelva ha creado unas tabletas a partir de proteínas de soja que liberan progresivamente nutrientes a las plantas. El nuevo producto permite un crecimiento saludable, optimiza la producción agrícola y evita la contaminación de suelos y aguas subterráneas.

Sigue leyendo
Muestran la escasa importancia del mosquito tigre en la transmisión de la malaria aviar
Sevilla | 25 de julio de 2024

El equipo científico, formado por expertos de la Estación Biológica de Doñana (EBD-CSIC), del Consejo Superior de Investigaciones Científicas (CSIC); la Universidad de Granada y el Nature Research Centre de Lituania ha analizado el papel de este díptero como vector de patógenos de la malaria aviar. El estudio apunta a la preferencia del mosquito tigre por alimentarse de mamíferos como una de las posibles causas de la baja relevancia en la dispersión de la enfermedad.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido