Crean un modelo de inteligencia artificial para detectar la COVID-19 mediante radiografías
Un equipo de la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.
Fuente: Universidad de Granada
Un equipo de la Universidad de Granada (UGR) y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.
El proyecto, respaldado por la Fundación BBVA con 150.000 euros, ha concluido su primera fase de investigación con el desarrollo de esta herramienta de inteligencia artificial basada en algoritmos de aprendizaje profundo que permite identificar si un paciente tiene COVID-19 de acuerdo con la imagen del pulmón obtenida a través de una radiografía de tórax, explica Francisco Herrera, catedrático de Inteligencia Artificial de la Universidad de Granada.
Además, el nivel de afectación pulmonar -si leve, moderado o severo- también puede ser analizado a través de este modelo, que, según los investigadores, ahorra tiempo y costes en relación a la PCR, la prueba que se emplea actualmente como el principal test más validado para detectar la presencia de la infección por COVID-19.
«Si un paciente llega a cualquier centro de salud con un síntoma de pulmón, se le hace una radiografía que en diez minutos puede dar la alarma si tiene COVID-19 y apreciar también el nivel de gravedad», detalla.
Algunos de los resultados obtenidos en esta primera fase ahora concluida, que han sido publicados en la revista IEEE Journal of Biomedical and Health, apuntan a una tasa media de acierto de entre el 75 y el 80% en la detección de los casos positivos, por encima de la actual de un radiólogo, que ronda el 69%.
En una segunda fase de la investigación, que prevé iniciarse el próximo mes de enero, el objetivo es utilizar la radiografía para hacer otras predicciones como el tiempo de ingreso hospitalario que requerirá el paciente en función de la gravedad, lo que permitiría a los hospitales hacer una previsión de camas, según Herrera.
A esa predicción se llegaría uniendo la imagen médica con la clínica del paciente.
También se proyecta desarrollar y adaptar el sistema para que sea capaz de diferenciar los pacientes afectados de COVID-19 de aquellos aquejados por otro tipo de enfermedades pulmonares, como las neumonías bacterianas u otras virales.
Una de las ventajas que aporta el uso de la radiografía de tórax para este tipo de detecciones es que son mayoría los hospitales y centros sanitarios con la maquinaria necesaria para ello, que habría que complementar con este nuevo modelo de inteligencia artificial, según el catedrático.
La idea, explica Herrera, es que se pueda acceder a él a través de una app, de modo que, llegado el caso, esta herramienta de inteligencia artificial pudiera, manteniendo la privacidad de datos, analizar la radiografía a partir de una fotografía tomada con el móvil, lo que requiere del diseño de un software en el que ya trabajan.
En el proyecto, coordinado por la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada, participa un equipo multidisciplinar de trece instituciones e investigadores de Jaén, Córdoba, Navarra, Madrid, Santiago o Elche.
Últimas publicaciones
La Universidad de Sevilla interviene en la actualidad en la restauración de 20 modelos anatómicos, de un total de 525 piezas que alberga en su fondo de esculturas realizadas entre los siglos XVIII al XX, usadas con fines docentes en la Facultad de Medicina. Por el momento, acaba de finalizar la primera fase de restauración, constituida por nueve piezas. Dan testimonio de los métodos de enseñanza que han formado durante siglos a generaciones de médicos.
Sigue leyendoLa miopatía nemalínica es el subtipo más frecuente de las miopatías congénitas, un grupo de trastornos musculares genéticos caracterizados clínicamente por hipotonía y debilidad, generalmente presentes desde el nacimiento. Esta investigación se enmarca dentro del Proyecto MYOCURE dirigido por el investigador de la Universidad Pablo de Olavide, José Antonio Sánchez Alcázar.
Sigue leyendoUn grupo de investigadores del Instituto de Investigación Biosanitaria de Granada, del que forman parte científicos de la Universidad de Granada, ha demostrado que la administración de células mesenquimales estromales de tejido intestinal humano protege contra el desarrollo del cáncer colorrectal asociado a colitis (CAC), pudiendo ser un tratamiento prometedor para la enfermedad inflamatoria intestinal.
Sigue leyendo