Crean un modelo de inteligencia artificial para detectar la COVID-19 mediante radiografías
Un equipo de la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.
Fuente: Universidad de Granada
Un equipo de la Universidad de Granada (UGR) y el Hospital Universitario Clínico San Cecilio de Granada ha culminado el desarrollo de un modelo de inteligencia artificial para detectar la existencia de COVID-19 en pacientes con afectación pulmonar a través de la radiografía de tórax que, en una segunda fase de investigación, pretende también predecir el tiempo de ingreso hospitalario.
El proyecto, respaldado por la Fundación BBVA con 150.000 euros, ha concluido su primera fase de investigación con el desarrollo de esta herramienta de inteligencia artificial basada en algoritmos de aprendizaje profundo que permite identificar si un paciente tiene COVID-19 de acuerdo con la imagen del pulmón obtenida a través de una radiografía de tórax, explica Francisco Herrera, catedrático de Inteligencia Artificial de la Universidad de Granada.
Además, el nivel de afectación pulmonar -si leve, moderado o severo- también puede ser analizado a través de este modelo, que, según los investigadores, ahorra tiempo y costes en relación a la PCR, la prueba que se emplea actualmente como el principal test más validado para detectar la presencia de la infección por COVID-19.
«Si un paciente llega a cualquier centro de salud con un síntoma de pulmón, se le hace una radiografía que en diez minutos puede dar la alarma si tiene COVID-19 y apreciar también el nivel de gravedad», detalla.
Algunos de los resultados obtenidos en esta primera fase ahora concluida, que han sido publicados en la revista IEEE Journal of Biomedical and Health, apuntan a una tasa media de acierto de entre el 75 y el 80% en la detección de los casos positivos, por encima de la actual de un radiólogo, que ronda el 69%.
En una segunda fase de la investigación, que prevé iniciarse el próximo mes de enero, el objetivo es utilizar la radiografía para hacer otras predicciones como el tiempo de ingreso hospitalario que requerirá el paciente en función de la gravedad, lo que permitiría a los hospitales hacer una previsión de camas, según Herrera.
A esa predicción se llegaría uniendo la imagen médica con la clínica del paciente.
También se proyecta desarrollar y adaptar el sistema para que sea capaz de diferenciar los pacientes afectados de COVID-19 de aquellos aquejados por otro tipo de enfermedades pulmonares, como las neumonías bacterianas u otras virales.
Una de las ventajas que aporta el uso de la radiografía de tórax para este tipo de detecciones es que son mayoría los hospitales y centros sanitarios con la maquinaria necesaria para ello, que habría que complementar con este nuevo modelo de inteligencia artificial, según el catedrático.
La idea, explica Herrera, es que se pueda acceder a él a través de una app, de modo que, llegado el caso, esta herramienta de inteligencia artificial pudiera, manteniendo la privacidad de datos, analizar la radiografía a partir de una fotografía tomada con el móvil, lo que requiere del diseño de un software en el que ya trabajan.
En el proyecto, coordinado por la Universidad de Granada y el Hospital Universitario Clínico San Cecilio de Granada, participa un equipo multidisciplinar de trece instituciones e investigadores de Jaén, Córdoba, Navarra, Madrid, Santiago o Elche.
Últimas publicaciones
Un equipo de investigación de la Universidad de Cádiz ha creado REDIBAGG, un método que acelera el entrenamiento de modelos de inteligencia artificial hasta un 70%, al utilizar menos datos pero sin perder precisión. La técnica tiene potencial para analizar grandes volúmenes de información en campos tan diversos como la medicina, la industria o las finanzas.
Sigue leyendoUn equipo de la Universidad de Córdoba en colaboración con otras entidades y equipos de investigación de España y Portugal, desarrolla un nuevo método que permite evaluar de manera sencilla el estado de calidad de las dehesas en función de una serie de buenas prácticas relacionadas con la biodiversidad, la productividad de los pastos o el manejo de la arboleda.
Sigue leyendoEl ayuno intermitente en días alternos no solo ayuda a adelgazar: un estudio de IBIMA demuestra que este patrón alimentario, al remodelar la microbiota intestinal y frenar la inflamación sistémica, mejora de forma significativa la memoria, la atención y el control inhibitorio en adultos con obesidad. La investigación allana el camino hacia una “nutrición de precisión para el cerebro”.
Sigue leyendo