Desarrollan un sistema ‘inteligente’ que detecta noticias falsas
Un equipo de investigación de las universidades de Jaén y Alicante ha testado un modelo basado en inteligencia artificial que determina la veracidad de las informaciones en medios digitales. Mediante la aplicación de esta herramienta, tanto periodistas como usuarios finales podrán definir la credibilidad de un escrito.
Un equipo de investigación de las universidades de Jaén y Alicante ha creado una aplicación que analiza las noticias de forma automática y determina la veracidad de éstas con una alta precisión. Aunque el modelo está aún en fase de testeo, se propone como una herramienta útil para filtrar la cantidad de información que llega cada día a periodistas y lectores.
Basado en técnicas de inteligencia artificial, el sistema testea la noticia en dos niveles detectando si existen incongruencias en el contenido y si la estructura coincide con la que cualquier publicación con rigor periodístico debe tener.

El sistema analiza la estructura de la noticia publicada atendiendo a las normas de periodismo clásicas: la regla de las 5W+H, conocida así por las siglas de las cuestiones en inglés, y la pirámide invertida.
Con el objetivo de ofrecer una mayor confianza al lector y dotar a los periodistas de nuevas herramientas que le permitan discernir entre diversas informaciones, los investigadores han publicado en la revista Expert Systems with Applications un artículo titulado ‘Exploiting discourse structure of traditional digital media to enhance automatic fake news detection en el que presentan el prototipo de un detector de ‘fake news’ para webs.
El sistema analiza la estructura de la noticia publicada atendiendo a las normas de periodismo clásicas: la regla de las 5W+H, conocida así por las siglas de las cuestiones en inglés, y la pirámide invertida. Estas guías se sustentan en que la noticia rigurosa debe contener información que responda a las seis preguntas básicas (¿qué?, ¿cuándo?, ¿dónde?, ¿quién?, ¿por qué? y ¿cómo?) y que se presente en gradación desde lo más importante hasta los detalles. “La estructura de una publicación nos da pistas de si hay base periodística o si, por el contrario, imita a una noticia real”, indica a la Fundación Descubre el investigador de la Universidad de Jaén Miguel Ángel García, autor del artículo.
A partir del análisis del lenguaje natural, los expertos desarrollan un algoritmo que detecta las informaciones que no responden a esta estructura. Estos cálculos se basan en técnicas de aprendizaje automático, también conocido como machine learning, de forma que el sistema va ‘aprendiendo’ a medida que va acumulando datos.
Además, la máquina puede procesar en segundos miles de datos simultáneos, algo que una persona no podría hacer. “Así, los periodistas pueden contrastar fuentes, detectar estructuras incorrectas, viralizadas, o que tengan incongruencias entre el titular y el cuerpo de manera inmediata y automática. También el usuario final puede tener evidencias de si la noticia que lee cumple con unos estándares o no”, añade la investigadora de la Universidad de Alicante Estela Saquete, también autora del artículo.
Analizar, detectar y resaltar para alertar
Los equipos ‘Sistemas Inteligentes de Acceso a la información’ (SINAI), de la Universidad de Jaén, y ‘Grupo de Procesamiento del Lenguaje Natural y Sistemas de Información’ (GPLSI), de la Universidad de, Alicante, realizaron las pruebas sobre un conjunto de datos en español con más de 200 artículos centrados en temas sanitarios, de especial relevancia en la actualidad debido a las numerosas noticias falsas que circulan sobre COVID-19.
El sistema toma como base el aprendizaje profundo, con el que se crean modelos computacionales compuestos por varias capas de procesamiento de datos. Concretamente en este trabajo, los expertos definen dos capas. Por un lado la estructura de la noticia y por otro el argumento. De esta manera, la máquina predice no sólo la credibilidad de la forma, sino también del contenido.
Además, los investigadores han aplicado un nuevo esquema en el tratamiento de los datos, conocido como anotación de grano fino, que consiste en establecer etiquetas a las noticias. Estas marcas se aplican a todas las posibilidades, aunque las diferencias sean pequeñas. De esta manera se obtiene una descripción detallada en los dos niveles para cada texto.

El objetivo de los expertos es lograr una aplicación que marque automáticamente el texto de una noticia mientras se lee y que alerte mediante una señal de partes de la noticia que puedan ser falsas.
Cada etiqueta tiene un conjunto de atributos que proporcionan información más allá de lo lingüístico incluyendo la verificación de hechos, relaciones semánticas entre componentes o características contextuales. Incluso, referencia aspectos relacionados con la carga emocional que pueda contener un escrito y que lo alejan de la objetividad que debe tener una noticia real.
El objetivo de los expertos es lograr una aplicación que marque automáticamente el texto de una noticia mientras se lee y que alerte mediante una señal de partes de la noticia que puedan ser falsas, indicando la referencia con otros textos similares en los que se pueda contrastar su veracidad.
Esta investigación se ha desarrollado mediante los proyectos ‘LIVING-LANG: Modelado del comportamiento de entidades digitales mediante Tecnologías del Lenguaje Humano’ del Ministerio de Ciencia e Innovación y ‘SIIA: Tecnologías del lenguaje humano para una sociedad inclusiva, igualitaria, y accesible’ de la Comunidad Valenciana.
Versión en inglés: Development of a ‘smart’ system for fake news detection
Referencias
Alba Bonet Jovera, Alejandro Piad Morffis, Estela Saquete, Patricio Martínez Barco y Miguel Ángel García Cumbreras.‘Exploiting discourse structure of traditional digital media to enhance automatic fake news detection’. Expert Systems with Applications. 2021
Más información:
#CienciaDirecta, agencia de noticias de ciencia andaluza, financiada por la Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía.
Teléfono: 954 232 349
Documentación adicional
Miguel Ángel García, investigador de la Universidad de Jaén y autor del artículo
Estela Saquete, investigadora de la Universidad de Alicante
Últimas publicaciones
Las excavaciones desarrolladas por la Universidad de Málaga han permitido conocer cómo se organizaba un inmueble de la época, en el que se ha observado la existencia de sectores de taller, dedicados a actividades metalúrgicas, así como otros de almacenamiento o de carácter doméstico. Asimismo, han constatado por primera vez, la existencia de restos romanos alejados del núcleo fenicio.
Sigue leyendoInvestigadores del Hospital Regional Universitario de Málaga y del Hospital Universitario Virgen de la Victoria publican un estudio que permite mejorar la respuesta tumoral a través de radioterapia de precisión y prolongar los beneficios clínicos de la inmunoterapia al evitar o retrasar la progresión del cáncer de pulmón y melanoma metastásico.
Sigue leyendoLa iniciativa DOCU-CLIM, que cuenta entre sus miembros con el grupo investigador de la UPO Vareclim sobre la Variabilidad y Reconstrucción del Clima, reúne en una plataforma única datos sobre el pasado del clima en la Tierra de todo el mundo. La investigación paleoclimática resulta fundamental para entender sus dinámicas actuales, sobre todo en un contexto de crisis climática como el que vivimos.
Sigue leyendoPolítica de cookies
Las cookies necesarias son absolutamente esenciales para que el sitio web funcione correctamente. Esta categoría solo incluye cookies que garantizan funcionalidades básicas y características de seguridad del sitio web. Estas cookies no almacenan ninguna información personal.
Las cookies de rendimiento se utilizan para comprender y analizar los índices de rendimiento clave del sitio web, lo que ayuda a brindar una mejor experiencia de usuario a los visitantes.
Las cookies analíticas se utilizan para comprender cómo los visitantes interactúan con el sitio web. Estas cookies ayudan a proporcionar información sobre métricas, el número de visitantes, la tasa de rebote, la fuente de tráfico, etc.
Las cookies publicitarias se utilizan para proporcionar a los visitantes anuncios y campañas de marketing relevantes. Estas cookies rastrean a los visitantes en los sitios web y recopilan información para proporcionar anuncios personalizados.