VOLVER

Share

Desarrollan un sistema ‘inteligente’ que detecta noticias falsas

Un equipo de investigación de las universidades de Jaén y Alicante ha testado un modelo basado en inteligencia artificial que determina la veracidad de las informaciones en medios digitales. Mediante la aplicación de esta herramienta, tanto periodistas como usuarios finales podrán definir la credibilidad de un escrito.


Jaén |
11 de mayo de 2021

Un equipo de investigación de las universidades de Jaén y Alicante ha creado una aplicación que analiza las noticias de forma automática y determina la veracidad de éstas con una alta precisión. Aunque el modelo está aún en fase de testeo, se propone como una herramienta útil para filtrar la cantidad de información que llega cada día a periodistas y lectores.

Basado en técnicas de inteligencia artificial, el sistema testea la noticia en dos niveles detectando si existen incongruencias en el contenido y si la estructura coincide con la que cualquier publicación con rigor periodístico debe tener.

El sistema analiza la estructura de la noticia publicada atendiendo a las normas de periodismo clásicas: la regla de las 5W+H, conocida así por las siglas de las cuestiones en inglés, y la pirámide invertida.

Con el objetivo de ofrecer una mayor confianza al lector y dotar a los periodistas de nuevas herramientas que le permitan discernir entre diversas informaciones, los investigadores han publicado en la revista Expert Systems with Applications un artículo titulado ‘Exploiting discourse structure of traditional digital media to enhance automatic fake news detection en el que presentan el prototipo de un detector de ‘fake news’ para webs.

El sistema analiza la estructura de la noticia publicada atendiendo a las normas de periodismo clásicas: la regla de las 5W+H, conocida así por las siglas de las cuestiones en inglés, y la pirámide invertida. Estas guías se sustentan en que la noticia rigurosa debe contener información que responda a las seis preguntas básicas (¿qué?, ¿cuándo?, ¿dónde?, ¿quién?, ¿por qué? y ¿cómo?) y que se presente en gradación desde lo más importante hasta los detalles. “La estructura de una publicación nos da pistas de si hay base periodística o si, por el contrario, imita a una noticia real”, indica a la Fundación Descubre el investigador de la Universidad de Jaén Miguel Ángel García, autor del artículo.

El investigador de la Universidad de Jaén Miguel Ángel García, autor del artículo.

A partir del análisis del lenguaje natural, los expertos desarrollan un algoritmo que detecta las informaciones que no responden a esta estructura. Estos cálculos se basan en técnicas de aprendizaje automático, también conocido como machine learning, de forma que el sistema va ‘aprendiendo’ a medida que va acumulando datos.

Además, la máquina puede procesar en segundos miles de datos simultáneos, algo que una persona no podría hacer. “Así, los periodistas pueden contrastar fuentes, detectar estructuras incorrectas, viralizadas, o que tengan incongruencias entre el titular y el cuerpo de manera inmediata y automática. También el usuario final puede tener evidencias de si la noticia que lee cumple con unos estándares o no”, añade la investigadora de la Universidad de Alicante Estela Saquete, también autora del artículo.

La investigadora de la Universidad de Alicante Estela Saquete, también autora del artículo.

Analizar, detectar y resaltar para alertar

Los equipos ‘Sistemas Inteligentes de Acceso a la información’ (SINAI), de la Universidad de Jaén, y ‘Grupo de Procesamiento del Lenguaje Natural y Sistemas de Información’ (GPLSI), de la Universidad de, Alicante, realizaron las pruebas sobre un conjunto de datos en español con más de 200 artículos centrados en temas sanitarios, de especial relevancia en la actualidad debido a las numerosas noticias falsas que circulan sobre COVID-19.

El sistema toma como base el aprendizaje profundo, con el que se crean modelos computacionales compuestos por varias capas de procesamiento de datos. Concretamente en este trabajo, los expertos definen dos capas. Por un lado la estructura de la noticia y por otro el argumento. De esta manera, la máquina predice no sólo la credibilidad de la forma, sino también del contenido.

Además, los investigadores han aplicado un nuevo esquema en el tratamiento de los datos, conocido como anotación de grano fino, que consiste en establecer etiquetas a las noticias. Estas marcas se aplican a todas las posibilidades, aunque las diferencias sean pequeñas. De esta manera se obtiene una descripción detallada en los dos niveles para cada texto.

El objetivo de los expertos es lograr una aplicación que marque automáticamente el texto de una noticia mientras se lee y que alerte mediante una señal de partes de la noticia que puedan ser falsas.

Cada etiqueta tiene un conjunto de atributos que proporcionan información más allá de lo lingüístico incluyendo la verificación de hechos, relaciones semánticas entre componentes o características contextuales. Incluso, referencia aspectos relacionados con la carga emocional que pueda contener un escrito y que lo alejan de la objetividad que debe tener una noticia real.

El objetivo de los expertos es lograr una aplicación que marque automáticamente el texto de una noticia mientras se lee y que alerte mediante una señal de partes de la noticia que puedan ser falsas, indicando la referencia con otros textos similares en los que se pueda contrastar su veracidad.

Esta investigación se ha desarrollado mediante los proyectos ‘LIVING-LANG: Modelado del comportamiento de entidades digitales mediante Tecnologías del Lenguaje Humano’ del Ministerio de Ciencia e Innovación y ‘SIIA: Tecnologías del lenguaje humano para una sociedad inclusiva, igualitaria, y accesible’ de la Comunidad Valenciana.

Versión en inglés: Development of a ‘smart’ system for fake news detection

Referencias

Alba Bonet Jovera, Alejandro Piad Morffis, Estela Saquete, Patricio Martínez Barco y Miguel Ángel García Cumbreras.‘Exploiting discourse structure of traditional digital media to enhance automatic fake news detection’. Expert Systems with Applications. 2021

Más información:

#CienciaDirecta, agencia de noticias de ciencia andaluza, financiada por la Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía.

Teléfono: 954 232 349

E-mail: comunicacion@fundaciondescubre.es



Share

Últimas publicaciones

El reencuentro con una nebulosa planetaria 30 años después revela cambios y una posible estrella compañera
Almería, Granada | 13 de enero de 2022

El Instituto de Astrofísica de Andalucía (IAA-CSIC) encabeza una investigación con datos del Observatorio de Calar Alto (CAHA) que muestran variabilidades en la nebulosa planetaria IC4997.

Sigue leyendo
Un nuevo modelo describe cómo las bacterias construyen el flagelo, el eficaz «propulsor» que les permite desplazarse
Sevilla | 13 de enero de 2022

El estudio, llevado a cabo por un grupo de investigación del Centro Andaluz de Biología del Desarrollo, muestra cómo se forma esta estructura imprescindible en el desplazamiento de determinadas bacterias.

Sigue leyendo
Concretan los efectos psicosociales del confinamiento en la población andaluza
Cádiz | 13 de enero de 2022

Un grupo de investigadores de la Universidad de Cádiz, liderados por el profesor Antonio Zayas, ha detallado qué impactos para la salud a medio plazo han podido ocasionarse tras las medidas restrictivas puestas en marcha para el control de la pandemia de la Covid-19 en el año 2020.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete