Describen cómo, dónde y cuándo se forman los elementos químicos más pesados que el hierro en nuestra Galaxia
La detección en el año 2017 de elementos pesados, como el oro o el platino, en el evento resultante de la fusión de dos estrellas de neutrones asociado a la señal de ondas gravitacionales ha supuesto un hito en el campo de la nucleosíntesis estelar y astrofísica nuclear. Ahora, un equipo internacional de científicos, en el que participa la Universidad de Granada (UGR), ha descrito cómo se forman elementos químicos más pesados que el hierro en el interior de las estrellas.
Fuente: Universidad de Granada
Un equipo internacional de científicos, en el que participa la Universidad de Granada (UGR), ha descrito cómo se forman elementos químicos más pesados que el hierro en el interior de las estrellas.
La detección en el año 2017 de elementos pesados, como el oro o el platino, en el evento resultante de la fusión de dos estrellas de neutrones (fenómeno denominado kilonova) asociado a la señal de ondas gravitacionales GW 170717, ha supuesto un hito en el campo de la nucleosíntesis estelar y astrofísica nuclear. Nunca antes la investigación sobre el origen de los elementos químicos pesados (aquellos con masa atómica A>70) había despertado tanto interés entre la comunidad científica.

La ilustración intenta simular la fusión de dos estrellas de neutrones en un sistema binario. Este escenario es uno de los propuestos para la formación de muchos de los elementos pesados.
A raíz de este descubrimiento observacional, se vienen realizando una cantidad ingente de trabajos teóricos que intentan reproducir mediante modelos estelares estas observaciones. El objetivo de estos estudios es identificar con precisión cómo, dónde y cuándo se forman los elementos más pesados que el hierro. Esta es la idea fundamental del trabajo publicado recientemente en la revista Monthly Notices of the Royal Astronomical Society del cual es autor el investigador de la Universidad de Granada Carlos Abia, del departamento de Física Teórica y del Cosmos, junto con investigadores franceses e italianos.
La mayoría de los isótopos más pesados que el hierro se producen en los interiores estelares mediante un proceso de captura de neutrones: bien mediante la captura de neutrones lenta (proceso-s, slow), o la captura rápida (proceso-r, rapid); aunque algunos de estos isótopos pueden ser también producidos (mínimamente) a través de captura de protones (el proceso-p).
Sin embargo, los modelos teóricos que intentan reproducir el proceso-r tienen un poder predictivo todavía muy limitado, debido a la complejidad en reproducir estas explosiones estelares, así como a la enorme incertidumbre existente en las propiedades nucleares de los isótopos que se encuentran lejos del denominado valle de estabilidad.
En este artículo, se ha estimado la contribución del proceso-s utilizando un modelo de evolución química de galaxias mediante el cual se simula numéricamente la interacción entre estrellas de diferente masa y metalicidad de diversas generaciones y el gas interestelar, a fin de calcular la evolución temporal (y espacial) de las abundancias de los elementos químicos en nuestra Galaxia.
Entre los ingredientes fundamentales de esta simulación figura la cantidad de un elemento «s» producido (yields) en el interior de las estrellas masivas (aquellas con masa superior a aproximadamente ocho veces la masa del Sol) que es expulsada al medio interestelar al final de su evolución, así como en las estrellas de masa baja e intermedia (estrellas entre 1 y 8 veces la masa solar), durante su última fase de evolución (denominada fase de la rama asintótica de las gigantes).
Por primera vez, la producción estelar de los diversos elementos químicos se ha calculado mediante códigos numéricos estelares homogéneos, es decir, utilizando las mismas aproximaciones e ingredientes físicos. La novedad del método empleado es que el resultado final se obtiene a partir de una secuencia de modelos de evolución química que corrigen iterativamente la contribución «s» y «r» a la composición química del Sistema Solar hasta alcanzar el nivel de convergencia deseado.
Últimas publicaciones
Un estudio de la Universidad de Córdoba ha desarrollado una herramienta para predecir, bajo diferentes condiciones de temperatura, el desarrollo de una de las principales bacterias de transmisión alimentaria, lo que permite estimar con mayor precisión la vida útil de estos alimentos.
Sigue leyendoUn equipo de investigación de la Universidad de Sevilla ha desarrollado una tecnología que higieniza el agua filtrando restos contaminantes y descomponiéndolos mediante el uso de energía solar. Tras ensayos en el laboratorio y en una lavandería de hospital, este estudio evalúa la rentabilidad y sostenibilidad de esta técnica para la gestión de residuos, al regenerar un bien finito como el agua empleando un recurso natural, en este caso la luz del Sol.
Investigadores de la Universidad de Sevilla inician el proyecto WEAPOM en el que se usará un dispositivo weareable para medir la carga mecánica que recibe el esqueleto y su impacto en la salud ósea. El equipo está en proceso de captación de mujeres postmenopáusicas interesadas en participar en este estudio. En concreto, mujeres con más de 45 años que lleven menos de diez años en la postmenopausia y no realicen ejercicio físico intenso de manera regular.
Sigue leyendo