VOLVER

Share

Describen cómo, dónde y cuándo se forman los elementos químicos más pesados que el hierro en nuestra Galaxia

La detección en el año 2017 de elementos pesados, como el oro o el platino, en el evento resultante de la fusión de dos estrellas de neutrones asociado a la señal de ondas gravitacionales ha supuesto un hito en el campo de la nucleosíntesis estelar y astrofísica nuclear. Ahora, un equipo internacional de científicos, en el que participa la Universidad de Granada (UGR), ha descrito cómo se forman elementos químicos más pesados que el hierro en el interior de las estrellas. 

Fuente: Universidad de Granada


Granada |
17 de diciembre de 2019

Un equipo internacional de científicos, en el que participa la Universidad de Granada (UGR), ha descrito cómo se forman elementos químicos más pesados que el hierro en el interior de las estrellas.

La detección en el año 2017 de elementos pesados, como el oro o el platino, en el evento resultante de la fusión de dos estrellas de neutrones (fenómeno denominado kilonova) asociado a la señal de ondas gravitacionales GW 170717, ha supuesto un hito en el campo de la nucleosíntesis estelar y astrofísica nuclear. Nunca antes la investigación sobre el origen de los elementos químicos pesados (aquellos con masa atómica A>70) había despertado tanto interés entre la comunidad científica.

La ilustración intenta simular la fusión de dos estrellas de neutrones en un sistema binario. Este escenario es uno de los propuestos para la formación de muchos de los elementos pesados.

A raíz de este descubrimiento observacional, se vienen realizando una cantidad ingente de trabajos teóricos que intentan reproducir mediante modelos estelares estas observaciones. El objetivo de estos estudios es identificar con precisión cómo, dónde y cuándo se forman los elementos más pesados que el hierro. Esta es la idea fundamental del trabajo publicado recientemente en la revista Monthly Notices of the Royal Astronomical Society del cual es autor el investigador de la Universidad de Granada Carlos Abia, del departamento de Física Teórica y del Cosmos, junto con investigadores franceses e italianos.

La mayoría de los isótopos más pesados que el hierro se producen en los interiores estelares mediante un proceso de captura de neutrones: bien mediante la captura de neutrones lenta (proceso-s, slow), o la captura rápida (proceso-r, rapid); aunque algunos de estos isótopos pueden ser también producidos (mínimamente) a través de captura de protones (el proceso-p).

Sin embargo, los modelos teóricos que intentan reproducir el proceso-r tienen un poder predictivo todavía muy limitado, debido a la complejidad en reproducir estas explosiones estelares, así como a la enorme incertidumbre existente en las propiedades nucleares de los isótopos que se encuentran lejos del denominado valle de estabilidad.

En este artículo, se ha estimado la contribución del proceso-s utilizando un modelo de evolución química de galaxias mediante el cual se simula numéricamente la interacción entre estrellas de diferente masa y metalicidad de diversas generaciones y el gas interestelar, a fin de calcular la evolución temporal (y espacial) de las abundancias de los elementos químicos en nuestra Galaxia.

Entre los ingredientes fundamentales de esta simulación figura la cantidad de un elemento «s» producido (yields) en el interior de las estrellas masivas (aquellas con masa superior a aproximadamente ocho veces la masa del Sol) que es expulsada al medio interestelar al final de su evolución, así como en las estrellas de masa baja e intermedia (estrellas entre 1 y 8 veces la masa solar), durante su última fase de evolución (denominada fase de la rama asintótica de las gigantes).

Por primera vez, la producción estelar de los diversos elementos químicos se ha calculado mediante códigos numéricos estelares homogéneos, es decir, utilizando las mismas aproximaciones e ingredientes físicos. La novedad del método empleado es que el resultado final se obtiene a partir de una secuencia de modelos de evolución química que corrigen iterativamente la contribución «s» y «r» a la composición química del Sistema Solar hasta alcanzar el nivel de convergencia deseado.


Share

Últimas publicaciones

Asocian el aumento del cáncer de colon en jóvenes con una infección bacteriana en la infancia
Internacional | 25 de abril de 2025

La incidencia de este tipo de tumor en adultos jóvenes ha crecido el doble en los últimos 20 años. La razón puede ser la exposición en la niñez a la toxina bacteriana colibactina, producia por cepas de Escherichia coli y capaz de alterar el ADN de las células del colon, según un estudio publicado en Nature. Si alguien adquiere una de estas mutaciones impulsoras a los 10 años, podría adelantarse décadas en el desarrollo de este tumor.

Sigue leyendo
Un consorcio liderado por la UCO promueve el primer sello de carbono europeo para la pasta y la cerveza
Córdoba | 24 de abril de 2025

La Unión Europea armoniza la agricultura sostenible en productos como el pan, la pasta o la cerveza con el primer sello europeo de cereales bajos en emisiones. El objetivo de este proyecto es crear un marco de referencia –el cereal certificado en bajas emisiones (CCBE)– para que estas prácticas se reconozcan en todas las fases de la cadena de valor, incluida la agricultura.

Sigue leyendo
Un estudio pionero revela la diversidad genética de las comunidades fenicio-púnicas del Mediterráneo occidental
Málaga | 24 de abril de 2025

Tres científicos de la Universidad de Málaga participan en esta investigación internacional, que acaba de publicarse en la revista Nature. Este trabajo ha utilizado ADN antiguo, incluyendo por primera vez, restos humanos de la bahía de Málaga, para caracterizar la ascendencia de las comunidades púnicas y buscar vínculos genéticos entre estos y los fenicios levantinos, con los que comparten cultura y lengua. 

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido