Describen cómo evolucionaron las rayas para desarrollar aletas en forma de alas
Un estudio del CSIC revela el mecanismo genético que explica la icónica forma de las aletas de estos peces.
Las rayas son organismos muy relevantes para comprender la evolución de los rasgos que nos hicieron humanos, como las extremidades.
Fuente: Área de Comunicación y Relaciones Institucionales. Delegación del CSIC Andalucía
El baile de una raya en el fondo del océano es elegante: sus enormes aletas frontales se agitan como alas mientras se desliza bajo la arena. Precisamente, la causa genética que se encuentra detrás de la forma de sus aletas ha sido el objeto del estudio desarrollado por investigadores del CSIC en el Centro Andaluz de Biología del Desarrollo (CABD), en Sevilla, y en el Instituto de Investigación Biomédica de Barcelona (IRBB). Los resultados, publicados en la revista Nature, confirman que las alteraciones de las estructuras tridimensionales que forma el ADN al plegarse sobre sí mismo, conocidas como dominios topológicamente asociados (TAD, por sus siglas en inglés), determinan los genes que se activan y desactivan en un momento determinado de la evolución.
Los investigadores señalan que los cambios genómicos que alteran los TADs pueden ser un motor de evolución. Hasta hace poco, el estudio de la evolución del genoma se centraba principalmente en las regiones codificantes, es decir, en aquellas partes que contienen los genes que dan lugar a las proteínas. Sin embargo, este nuevo estudio se centra en el papel de los TADs y de las regiones no codificantes. “Esta es una nueva forma de entender cómo evolucionan los genomas”, comenta Darío Lupiáñez, genetista del Centro Max Delbrück de Medicina Molecular (Alemania) y uno de los autores principales del estudio.
Hace más de 450 millones de años, el genoma de un pez primitivo, el ancestro de todos los animales vertebrados, se duplicó dos veces. La expansión del material genético impulsó la rápida evolución de más de 60.000 vertebrados, incluidos los humanos. Uno de nuestros parientes vertebrados más lejanos son las rayas, unos organismos muy relevantes para comprender la evolución de los rasgos que nos hicieron humanos, como las extremidades.
Para ello, los investigadores han estudiado un tipo de raya (Leucoraja erinacea) que, debido a la similitud de esta especie con los vertebrados ancestrales, “permite comparar sus características con las de otras especies para determinar qué es novedoso y qué es ancestral durante la evolución”, explica Christina Paliou, bióloga del CABD y una de las primeras autoras.
Un momento crucial para la genómica evolutiva
En 2017, el fallecido investigador del CABD José Luis Gómez-Skarmeta, figura esencial en la genómica evolutiva en nuestro país, reunió a científicos de todo el mundo para estudiar la evolución de la raya. Su interés era investigar cómo los genomas evolucionan estructural y funcionalmente para promover la aparición de nuevos rasgos.
Aquel momento fue crucial para el campo de la genómica evolutiva. Los científicos obtuvieron una visión completamente nueva sobre cómo el ADN de cada célula, que llega a medir hasta dos metros, se pliega en un núcleo celular de sólo 0,005 centímetros de diámetro. Estos nuevos estudios demostraron que el empaquetamiento del ADN en el núcleo está lejos de ser aleatorio, sino que se organiza en estructuras 3D llamadas TADs, que contienen genes y sus secuencias reguladoras. “Estas estructuras 3D aseguran que los genes apropiados se activen y desactiven en un momento determinado, en las células adecuadas”, explica el Juan Tena, uno de los autores principales del estudio.
Rafael Acemel, genetista del centro Max Delbrück y uno de los primeros autores, realizó experimentos utilizando la tecnología Hi-C, para así dilucidar la estructura 3D de los TADs. Pero interpretar los resultados fue un desafío, ya que los científicos necesitaban el genoma completo de la raya como punto de referencia. “En ese momento, la referencia consistía en miles de pequeñas piezas de secuencia de ADN que se encontraban completamente desordenadas, lo cual no ayudaba mucho”. Para superar esta dificultad, los científicos utilizaron tecnología de secuenciación de lectura larga, junto con los datos de Hi-C, para ensamblar las piezas del ADN como un rompecabezas y asignar las secuencias desordenadas a los cromosomas de la raya. Con esta nueva referencia, reconstruir la estructura 3D de los TAD resultó finalmente posible.
Con este nuevo genoma pudieron establecer comparaciones con los genomas de los parientes más cercanos, los tiburones, para así identificar TADs alterados durante la evolución de las rayas. Estos TAD alterados incluían genes de la vía Wnt/PCP, que es importante para el desarrollo de las aletas. También identificaron una variación específica en una secuencia no codificante cerca de los genes Hox, que también regulan el desarrollo de las aletas. “Esta secuencia específica puede activar varios genes Hox en la parte frontal de las aletas de la raya, lo que no sucede en otros peces o animales tetrápodos”, señala Paliou. Posteriormente, los científicos realizaron experimentos funcionales que confirmaron que estos cambios moleculares contribuyeron a la evolución de la característica forma de la aleta de las rayas.
Los TADs impulsan la evolución
Estudios previos habían demostrado que cambios en los TADs pueden afectar a la expresión de genes y causar enfermedad. En este nuevo estudio, los científicos demuestran que los TADs también están involucrados en la evolución de rasgos en ciertas especies.
Los TADs son importantes para la regulación de genes, ya que el 40 % de ellos se conservan en todos los vertebrados, mientras que el 60% restante ha evolucionado de una u otra forma. Este mecanismo de evolución podría ser relativamente frecuente y explicar muchos otros rasgos interesantes de especies que observamos en la naturaleza. Este es un hallazgo importante, ya que sugiere que la estructura 3D del genoma influye en su evolución», concluye Lupiáñez.
Referencia: Ferdinand Marlétaz, Elisa de la Calle-Mustienes, Rafael D. Acemel, Christina Paliou et al. The little skate genome and the evolutionary emergence of wing-like fin appendages. Nature, DOI: 10.1038/s41586-023-05868-1
Últimas publicaciones
Un novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.
Sigue leyendoEste avance supone un hito en el camino para lograr el dispositivo de fusión más compacto posible, uno de los principales objetivos de los investigadores del Laboratorio de Ciencia del Plasma y Tecnología de Fusión de la Universidad de Sevilla que desarrollan este proyecto. Este paso acerca a la comunidad internacional a la energía de fusión: una fuente de energía sostenible limpia y prácticamente ilimitada.
Sigue leyendoEl CSIC participa en un estudio internacional que ha identificado una nueva función de la proteína responsable de evitar la toxicidad por exceso de sodio. El desarrollo de una nueva técnica analítica para estudiar la nutrición vegetal aporta herramientas biotecnológicas para mejorar la tolerancia de las plantas a suelos salinos.
Sigue leyendo