Descubierto un mecanismo que explica el movimiento inestable de las burbujas que se elevan en el agua
El profesor de la Universidad de Sevilla Miguel Ángel Herrada, en colaboración con Jens G. Eggers, profesor de la Universidad de Bristol, ha descubierto un mecanismo que explica el movimiento inestable de las burbujas que se elevan en el agua. Según los investigadores, los resultados, publicados en la prestigiosa revista PNAS, pueden ser útiles para comprender el movimiento de partículas cuyo comportamiento es intermedio entre un sólido y un gas.
Fuente: Universidad de Sevilla
El profesor de la Universidad de Sevilla Miguel Ángel Herrada, en colaboración con Jens G. Eggers, profesor de la Universidad de Bristol, ha descubierto un mecanismo que explica el movimiento inestable de las burbujas que se elevan en el agua. Según los investigadores, los resultados, publicados en la prestigiosa revista PNAS, pueden ser útiles para comprender el movimiento de partículas cuyo comportamiento es intermedio entre un sólido y un gas.
Leonardo da Vinci observó ya hace cinco siglos que las burbujas de aire, si son suficientemente grandes, se desvían periódicamente, en zigzag o en espiral, del movimiento en línea recta. Sin embargo, aún no se había encontrado una descripción cuantitativa del fenómeno ni un mecanismo físico que explicara este movimiento periódico.
Los autores de este nuevo estudio han desarrollado una técnica de discretización numérica para caracterizar con precisión la interfaz aire-agua de la burbuja, lo que permite simular su movimiento y estudiar su estabilidad. Sus simulaciones concuerdan bien con mediciones de alta precisión del movimiento inestable de las burbujas e indican que éstas se desvían de la trayectoria recta en el agua si su radio esférico supera los 0,926 milímetros, un resultado dentro del 2% de los valores experimentales obtenidos con agua ultrapura en los años noventa.
Los investigadores proponen un mecanismo para la inestabilidad de la trayectoria de la burbuja en el que una inclinación periódica de ésta cambia la curvatura, lo que afecta a la velocidad de ascenso y provoca un bamboleo en la trayectoria de la burbuja, inclinando hacia arriba el lado de la burbuja cuya curvatura ha crecido. A continuación, a medida que el fluido se mueve más deprisa y la presión del fluido desciende alrededor de la superficie de alta curvatura, el desequilibrio de presión devuelve la burbuja a su posición original, reiniciando el ciclo periódico.
Referencia bibliográfica:
Path instability of an air bubble rising in water; Miguel A. Herradaa, Jens G. Eggers; PNAS 2023 Vol. 120 Nº 0; DOI: 10.1073/pnas.2216830120
Últimas publicaciones
Un equipo de investigación del Instituto de Agricultura Sostenible de Córdoba ha validado un sistema para estudiar semillas enteras en segundos, sin productos químicos y con similar fiabilidad que las técnicas tradicionales. El avance acorta el proceso de selección necesario para obtener variedades con mayor contenido en compuestos saludables.
Sigue leyendoLa investigación transformará residuos de origen animal en quitosano, para el desarrollo de productos cosméticos y funcionales orientados al bienestar de la mujer en etapas como la menopausia. La investigación combina tecnologías avanzadas de formulación con un enfoque multidisciplinar que integra conocimientos en química, ingeniería, ciencia de los alimentos y ciencia de materiales. El objetivo final es desarrollar formulaciones innovadoras con potencial de transferencia a la industria cosmética y alimentaria.
Sigue leyendoUn estudio internacional liderado desde Málaga abre nuevas posibles vías de tratamiento para las personas con asma. Así, investigadores de la Universidad de Málaga, de IBIMA Plataforma BIONAND y del Hospital Regional Universitario de Málaga han coordinado una publicación clave de la Academia Europea de Alergia e Inmunología Clínica (EAACI) que cambia la forma de entender y tratar esta enfermedad respiratoria que afecta a millones de personas en todo el mundo.



