VOLVER

Share

Diseñan un sistema ‘inteligente’ para mejorar el rendimiento de las plantas solares

Un equipo de investigación de la Plataforma Solar de Almería (PSA) perteneciente al  Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) ha desarrollado un algoritmo informático basado en redes neuronales que ajusta de forma automática los captadores de radiación solar atendiendo al clima y su posición en el campo. Los resultados de este estudio confirman que esta estrategia es más segura, eficiente y rentable.

Fuente: Fundación Descubre


Almería |
06 de diciembre de 2024

Un equipo de investigación de la Plataforma Solar de Almería, perteneciente al Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) en colaboración con la Universidad de Almería y Universidad de Granada, ha diseñado un sistema informático basado en inteligencia artificial para mejorar el rendimiento de las plantas solares. Esta estrategia permite que los captadores de radiación solar se comporten de forma autónoma y se ajusten en tiempo real a las circunstancias climáticas y de la radiación solar.

https://www.youtube.com/watch?v=ZSdCuXgXELA

La novedad de este sistema es su capacidad para gestionar de forma autónoma, en tiempo real y de forma simultánea miles de heliostatos, ‘espejos’ que reflejan la radiación solar hacia diferentes puntos óptimos de un receptor para transformar la radiación solar en energía térmica. 

De este modo, incrementa hasta un 8,8% la energía capturada anualmente en comparación con las estrategias tradicionales, que consisten en colocar estos en puntos predefinidos. Habitualmente, este sistema de control solar está bajo supervisión humana constante, dado que su correcto funcionamiento requiere que se adapten a los cambios de las condiciones solares y meteorológicas constantemente.

Javier Bonilla, investigador de CIEMAT-PSA y coautor del estudio.

La estrategia propuesta por los investigadores disminuye los riesgos de operación, es más segura, eficiente y rentable económicamente que las tradicionales, dado que incrementa la cantidad de energía capturada y, al mismo tiempo, reduce los costes operativos.

Adaptarse a distintos escenarios

En el artículo titulado ‘Reinforcement learning for heliostat aiming: improving the performance of Solar Tower Plants’ y publicado en Applied Energy, los expertos explican que este sistema emplea un enfoque ‘inteligente’ basado en aprendizaje por refuerzo (reinforcement learning) para que los heliostatos concentren la radiación solar sobre el receptor automáticamente de manera óptima. Este modelo elimina la necesidad de ajustar puntos predefinidos de forma manual y supervisión humana constante, adaptándose a cambios meteorológicos y de la posición del sol en tiempo real. 

El investigador de CIEMAT-PSA José Antonio Carballo, coautor del estudio.

El aprendizaje por refuerzo es una técnica de inteligencia artificial en la que un sistema aprende a tomar decisiones en un entorno cambiante mediante prueba y error. “El algoritmo se basa en un histórico de datos para aprender y utiliza redes neuronales, que funcionan como un ‘cerebro’, para aprender qué está bien y qué está mal. Esto permite que ajuste la estrategia a cada situación y aprender a resolver problemas complejos”, explica a la Fundación Descubre el investigador de CIEMAT-PSA Javier Bonilla, coautor del estudio.

Entorno simulado

Para confirmar su eficacia, los expertos probaron esta estrategia durante un año en un entorno simulado en un ‘superordenador’ en el Centro Extremeño de Tecnologías Avanzadas (CETA-CIEMAT), donde la inteligencia artificial tenía en cuenta factores como la época del año, el momento del día y condiciones climáticas procedentes de una estación meteorológica para modificar la posición de 300 heliostatos. “Esto permite al sistema tomar decisiones minuto a minuto sin supervisión”, comenta el investigador de CIEMAT-PSA José Antonio Carballo, coautor del estudio.

De este modo, esta tecnología aprende de distintos escenarios la mejor manera de posicionar los heliostatos en función de las circunstancias para que estos recojan más energía. 

Los expertos probaron esta estrategia durante un año en un entorno simulado en un ‘superordenador’ en el Centro Extremeño de Tecnologías Avanzadas (CETA-CIEMAT).

La unidad de investigación ‘Tecnologías Termosolares de Foco Puntual’ del CIEMAT-PSA quiere ampliar el alcance de este proyecto para automatizar la planta solar al completo. Para ello, pretenden crear un gemelo digital de una planta solar de torre al que aplicar algoritmos de aprendizaje que le permita gestionarse de forma autónoma.

Este trabajo perteneciente al proyecto HELIOSUN ha sido financiado por la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía y la Agencia Estatal de Investigación del Ministerio de Ciencia, Innovación y Universidades.

Reportaje: Captación solar: de Arquímedes a la inteligencia artificial

Referencias

J.A. Carballo, J. Bonilla, N.C. Cruz, J. Fernández-Reche, J.D. Álvarez, A. Avila-Marin, M. Berenguel. ‘Reinforcement learning for heliostat aiming: improving the performance of Solar Tower Plants’, Applied Energy

Más información:

#CienciaDirecta, agencia de noticias de ciencia andaluza, impulsada por la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, con la colaboración de la Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia e Innovación.

Teléfono: 663 920 093

E-mail: comunicacion@fundaciondescubre.es



Share

Últimas publicaciones

Descubre celebra la Semana Mundial del Espacio con tres ‘Cafés con Ciencia’ para despertar vocaciones científicas
Sevilla | 07 de octubre de 2025

La Fundación Descubre y Sevilla Tech Park organizan estos encuentros donde tres investigadores andaluces cuentan su experiencia científica a un grupo de estudiantes del IES Ramón Carande y del IES Heliópolis mientras desayunan y charlan sobre su trabajo y otras curiosidades. Esta iniciativa se suma a las actividades que se celebran hasta el 10 de octubre en el marco de la Semana Mundial del Espacio 2025 (World Space Week, WSW).

Sigue leyendo
Investigadores del CSIC descubren el primer ejemplo de vocalización animal que combina instinto y aprendizaje
Sevilla | 03 de octubre de 2025

Un equipo internacional liderado por la EBD-CSIC ha identificado una vocalización similar en más de 20 especies de aves de todo el mundo. Los resultados, publicados en ‘Nature Ecology and Evolution’, cuestionan la tradicional división entre la comunicación animal y el lenguaje humano.

Sigue leyendo
Un estudio internacional confirma la eficacia de la terapia cognitivo-conductual en diversos trastornos mentales
Sevilla | 02 de octubre de 2025

La investigadora de la Universidad de Sevilla, Emma Motrico, ha participado en el estudio que observa efectos terapéuticos potentes en trastornos como la depresión, la ansiedad, la bulimia, el estrés postraumático o las fobias.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido