VOLVER

Share

Emplean inteligencia artificial para identificar los avances científicos más importantes contra la COVID-19 y llevarlos a la práctica clínica

Una investigación de la Universidad de Granada analiza el papel que juega la inteligencia artificial (IA) en la revisión sistemática de estudios relevantes contra el coronavirus. Esta tarea permite identificar los estudios más relevantes contra el coronavirus, entre la enorme cantidad de trabajos de investigación que se han desarrollado, y llevarlos a la práctica clínica.

Fuente: Universidad de Granada


Granada |
15 de septiembre de 2022

Los departamentos de Medicina Preventiva y Salud Pública y Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada (UGR) han liderado una investigación que analiza el uso durante la pandemia de COVID-19 de las nuevas herramientas de inteligencia artificial para la elaboración de revisiones sistemáticas. Esta tarea permite identificar los estudios más relevantes contra el coronavirus, entre la enorme cantidad de trabajos de investigación que se han desarrollado, y llevarlos a la práctica clínica.

inteligencia artificial (IA) en la revisión sistemática de estudios relevantes contra el coronavirus

Este trabajo aplica inteligencia artificial (IA) en la revisión sistemática de estudios relevantes contra el coronavirus.

“La producción científica avanza a un ritmo abrumador en todos los campos del conocimiento. En salud, por ejemplo, sobrepasamos ya el medio millón de artículos sobre COVID-19 en publicaciones médicas. Para que todo este conocimiento repercuta en la práctica clínica necesitamos contar con revisiones sistemáticas, el trabajo con mayor calidad en ciencias de la salud y que agrupa los resultados de todos los estudios existentes sobre un tema concreto”, explica Juan Ramón Tercero, autor principal del estudio e investigador del Departamento de Medicina Preventiva y Salud Pública.

Con las revisiones sistemáticas se pueden obtener conclusiones globales sobre los mejores tratamientos, pruebas diagnósticas o estrategias de prevención, así como efectuar recomendaciones con las que mejorar la eficiencia y calidad de la práctica clínica.

Uso de la inteligencia artificial

Realizar una revisión sistemática es una tarea costosa que requiere la dedicación de numerosos investigadores para identificar, evaluar y sintetizar toda la información. “La inteligencia artificial y el machine learning tienen por delante un amplísimo campo para mejorar todo este proceso, ahorrándonos mucho tiempo y trabajo. Ya existen para ello algunas herramientas, entre las que destacan RobotSearch y Abstrackr, pero aún son muy desconocidas incluso entre los profesionales a los que van destinadas”, detalla Juan Ramón Tercero.

Juan Ramón Tercero, investigador principal del estudio

Juan Ramón Tercero, investigador principal del estudio.

El estudio trata un tema emergente como ha sido la pandemia de COVID-19, en la que tanto el volumen de información generada en un tiempo récord como la urgencia de disponer de evidencias sólidas hace más urgente el uso de nuevas tecnologías. “Hemos comprobado que estas herramientas se han utilizado muy poco (solo en un 0,7% del total de revisiones sistemáticas sobre la COVID-19), pero facilitan la producción de revisiones sistemáticas, disminuyendo la carga de trabajo de los investigadores y asociándose a un mayor impacto bibliográfico”, expone el autor.

La utilidad de la inteligencia artificial para el desarrollo de revisiones sistemáticas es incuestionable, apuntan los investigadores. “Sin la menor duda, y a pesar de su escasa utilización actual, en los próximos años estas herramientas serán tan habituales como son hoy los motores de búsqueda y los programas de gestión bibliográfica. Por ello, es el momento de financiar la investigación dirigida a potenciar la aplicación de la inteligencia artificial en las revisiones sistemáticas e invertir en la formación de los profesionales sanitarios”, concluye Juan Ramón Tercero.

Referencia bibliográfica:

Tercero-Hidalgo, J.R., Khan, K.S., Bueno-Cavanillas, A., Fernández-López, R., Huete, J.F., Amezcua-Prieto, C., Zamora, J. and Fernández-Luna, J.M., 2022. Artificial intelligence in COVID-19 evidence syntheses was underutilized, but impactful: a methodological study. Journal of Clinical Epidemiology, 148, pp.124-134. DOI 10.1016/j.jclinepi.2022.04.027


Share

Últimas publicaciones

El primer atlas celular de la inflamación utiliza IA para acelerar el diagnóstico de enfermedades inflamatorias
España | 12 de enero de 2026

Investigadores del Centro Nacional de Análisis Genómico han lanzado esta herramienta biomédica, una base de datos exhaustiva en la que han analizado más de 6,5 millones de células de la sangre procedentes de 1.000 personas, tanto individuos sanos como pacientes de 19 enfermedades diferentes.

Sigue leyendo
Identifican compuestos con actividad antitumoral en una nueva variedad de berenjena
Granada | 12 de enero de 2026

Un estudio desarrollado por la Universidad de Granada y el ibs.GRANADA, con la colaboración de la Fundación Cellbitec, demuestra la eficaciade los extractos de semilla de la berenjena S0506 frente al cáncer de colon, tanto en laboratorio como en modelos animales.

Sigue leyendo
Obtienen cereales resistentes a la sequía y con bajo contenido en gluten
Córdoba | 10 de enero de 2026

Un equipo de investigación del Instituto de Agricultura Sostenible del CSIC de Córdoba ha confirmado la mejora en la respuesta al estrés hídrico de un tipo de trigo con bajo contenido en este alérgeno. Los resultados obtenidos mediante técnicas genéticas abren nuevas vías para la elaboración de productos sin este compuesto a partir del mismo cultivo.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido