Emplean inteligencia artificial para identificar los avances científicos más importantes contra la COVID-19 y llevarlos a la práctica clínica
Una investigación de la Universidad de Granada analiza el papel que juega la inteligencia artificial (IA) en la revisión sistemática de estudios relevantes contra el coronavirus. Esta tarea permite identificar los estudios más relevantes contra el coronavirus, entre la enorme cantidad de trabajos de investigación que se han desarrollado, y llevarlos a la práctica clínica.
Fuente: Universidad de Granada
Los departamentos de Medicina Preventiva y Salud Pública y Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada (UGR) han liderado una investigación que analiza el uso durante la pandemia de COVID-19 de las nuevas herramientas de inteligencia artificial para la elaboración de revisiones sistemáticas. Esta tarea permite identificar los estudios más relevantes contra el coronavirus, entre la enorme cantidad de trabajos de investigación que se han desarrollado, y llevarlos a la práctica clínica.

Este trabajo aplica inteligencia artificial (IA) en la revisión sistemática de estudios relevantes contra el coronavirus.
“La producción científica avanza a un ritmo abrumador en todos los campos del conocimiento. En salud, por ejemplo, sobrepasamos ya el medio millón de artículos sobre COVID-19 en publicaciones médicas. Para que todo este conocimiento repercuta en la práctica clínica necesitamos contar con revisiones sistemáticas, el trabajo con mayor calidad en ciencias de la salud y que agrupa los resultados de todos los estudios existentes sobre un tema concreto”, explica Juan Ramón Tercero, autor principal del estudio e investigador del Departamento de Medicina Preventiva y Salud Pública.
Con las revisiones sistemáticas se pueden obtener conclusiones globales sobre los mejores tratamientos, pruebas diagnósticas o estrategias de prevención, así como efectuar recomendaciones con las que mejorar la eficiencia y calidad de la práctica clínica.
Uso de la inteligencia artificial
Realizar una revisión sistemática es una tarea costosa que requiere la dedicación de numerosos investigadores para identificar, evaluar y sintetizar toda la información. “La inteligencia artificial y el machine learning tienen por delante un amplísimo campo para mejorar todo este proceso, ahorrándonos mucho tiempo y trabajo. Ya existen para ello algunas herramientas, entre las que destacan RobotSearch y Abstrackr, pero aún son muy desconocidas incluso entre los profesionales a los que van destinadas”, detalla Juan Ramón Tercero.
El estudio trata un tema emergente como ha sido la pandemia de COVID-19, en la que tanto el volumen de información generada en un tiempo récord como la urgencia de disponer de evidencias sólidas hace más urgente el uso de nuevas tecnologías. “Hemos comprobado que estas herramientas se han utilizado muy poco (solo en un 0,7% del total de revisiones sistemáticas sobre la COVID-19), pero facilitan la producción de revisiones sistemáticas, disminuyendo la carga de trabajo de los investigadores y asociándose a un mayor impacto bibliográfico”, expone el autor.
La utilidad de la inteligencia artificial para el desarrollo de revisiones sistemáticas es incuestionable, apuntan los investigadores. “Sin la menor duda, y a pesar de su escasa utilización actual, en los próximos años estas herramientas serán tan habituales como son hoy los motores de búsqueda y los programas de gestión bibliográfica. Por ello, es el momento de financiar la investigación dirigida a potenciar la aplicación de la inteligencia artificial en las revisiones sistemáticas e invertir en la formación de los profesionales sanitarios”, concluye Juan Ramón Tercero.
Referencia bibliográfica:
Tercero-Hidalgo, J.R., Khan, K.S., Bueno-Cavanillas, A., Fernández-López, R., Huete, J.F., Amezcua-Prieto, C., Zamora, J. and Fernández-Luna, J.M., 2022. Artificial intelligence in COVID-19 evidence syntheses was underutilized, but impactful: a methodological study. Journal of Clinical Epidemiology, 148, pp.124-134. DOI 10.1016/j.jclinepi.2022.04.027
Últimas publicaciones
Un equipo de investigación de la Universidad de Almería ha desarrollado una fórmula para preservar cepas microalgales en un medio de cultivo más viscoso que aumenta el tamaño de las colonias de estos microorganismos. Con la nueva estrategia, las poblaciones pasan de conservarse una semana a dos meses, manteniendo sus características genéticas y funcionales intactas para los experimentos en laboratorio.
Un trabajo de investigación de la Universidad de Granada describe el complejo mapa actual de fuentes de información que condiciona las decisiones de salud de las mujeres durante la gestación, destacando la saturación informativa y la confianza en el personal médico.
Investigadores de la Universidad de Córdoba analizan las prestaciones de cuatro tipos de materiales para hacer más eficientes los sistemas de enfriamiento evaporativo, capaces de reducir el consumo energético en un 70% frente a los convencionales.
Sigue leyendo

