VOLVER

Share

La genómica 3D abre camino a diagnósticos más precisos para detectar trastornos del crecimiento

Este estudio con participación del CSIC muestra cómo nuevas técnicas permiten diferenciar duplicaciones genéticas causantes de enfermedades relacionadas con el trastorno del crecimiento de aquellas sin efectos dañinos. El mapeo genómico en 3D se posiciona como una herramienta clave para reducir la incertidumbre en familias y mejorar el diagnóstico temprano.

Fuente: Comunicación CSIC Andalucía y Extremadura


Sevilla |
03 de octubre de 2024

Una investigación en que participa el Consejo Superior de Investigaciones Científicas (CSIC), organismo dependiente del Ministerio de Ciencia, Innovación y Universidades, presenta una nueva técnica de mapeo genómico en 3D que ayuda a diferenciar entre duplicaciones genéticas patogénicas y benignas relacionadas con un trastorno raro del crecimiento. El trabajo lo han desarrollado investigadores de la Universidad Humanitas de Milán (Italia), el Centro Andaluz de Biología del Desarrollo (CABD) de Sevilla y el Centro Hospitalario Universitario de Lieja (Bélgica).

Publicado en Genome Medicine, el estudio se ha centrado en mejorar el diagnóstico del acrogigantismo ligado al cromosoma X (X-LAG), una forma grave de gigantismo que aparece en la infancia. Utilizando técnicas avanzadas para estudiar cómo se organiza el ADN en las células, los científicos han podido mejorar la precisión del diagnóstico de este trastorno, que está causado por un problema en el gen GPR101.

El estudio se ha centrado en mejorar el diagnóstico del acrogigantismo, una forma grave de gigantismo que aparece en la infancia. Imagen: Pixabay.

En 2022, los investigadores descubrieron que el acrogigantismo ligado al cromosoma X se debe a duplicaciones que cambian la estructura tridimensional de ese cromosoma. Este cambio afecta a una zona del ADN llamada TAD (por sus siglas en inglés, Topologically Associating Domain), que normalmente mantiene al gen GPR101 aislado de otros genes cercanos. Sin embargo, en este trastorno, la duplicación coloca al gen bajo el control de elementos que no deberían influir en él, creando lo que llaman un «neo-TAD». Esta condición, llamada TADopatía, provoca que los niños afectados produzcan demasiada hormona de crecimiento, lo que lleva al gigantismo.

X-LAG es la única enfermedad conocida que está relacionada con duplicaciones del gen GPR101 y, como afecta a todos los que tienen esta duplicación, encontrarla debería indicar un diagnóstico de X-LAG. Sin embargo, los investigadores se sorprendieron cuando genetistas clínicos encontraron duplicaciones de GPR101 en personas sin signos de gigantismo. Algunos de estos casos fueron descubiertos durante pruebas prenatales, lo que hizo pensar que podía tratarse de X-LAG, pero no fue así.

“Estos hallazgos desafiaron nuestro modelo de cómo se produce el X-LAG. Inmediatamente vimos la oportunidad de convertir nuestros métodos de investigación de laboratorio en una herramienta clínica para explicar estos hallazgos.  Queríamos proporcionar a nuestros compañeros genetistas y a los padres información útil desde el punto de vista médico.  La primera pista en la que nos centramos fue el menor tamaño de las duplicaciones GPR101 en estos nuevos casos en comparación con los pacientes X-LAG”, explica Adrian Daly, autor principal y endocrinólogo del Centro Hospitalario Universitario de Lieja.

Las posibilidades de la genética 3D

La secuenciación del genoma es una herramienta cada vez más común en la investigación de enfermedades como el cáncer y los problemas en el desarrollo, además de resultar práctica para hacer pruebas en embarazos. Sin embargo, aunque es muy útil para detectar trastornos genéticos, tiene algunos desafíos, entre ellos, la generación de excesivos datos que son difíciles de interpretar, lo que complica el trabajo de los médicos y asesores genéticos. Esto puede aumentar la ansiedad de los pacientes, sobre todo en pruebas durante el embarazo.

Los investigadores utilizaron una técnica que muestra cómo se organiza el ADN en el núcleo de la célula. Compararon la estructura del ADN alrededor del gen GPR101 en los nuevos casos con la de personas que tienen X-LAG. En X-LAG, la duplicación del gen cambia la organización del ADN y activa un grupo de elementos que no deberían influir en el gen, lo que causa la enfermedad. Pero en los nuevos casos, las duplicaciones eran más pequeñas y no cambiaron esta organización, por lo que el gen GPR101 no se activó de forma anormal, y así no se desarrolló X-LAG.

“Este estudio muestra cómo las técnicas 3D pueden utilizarse para ayudar a la toma de decisiones diagnósticas en afecciones asociadas a la alteración de la TAD. Al comprender los impactos estructurales de estas duplicaciones, hemos demostrado que podemos distinguir las duplicaciones GPR101 patogénicas de las neutras, lo que permite tomar decisiones clínicas informadas y ofrecer asesoramiento genético”, afirma Giampaolo Trivellin, investigador de la Universidad Humanitas.

Esta investigación demuestra que el mapeo del ADN en 3D podría usarse en el futuro para diagnosticar otros trastornos genéticos. También destaca que estas técnicas pueden hacer que las pruebas prenatales sean más precisas, lo que ayudaría a reducir la preocupación de las familias y a acelerar el diagnóstico de problemas genéticos. “Al aplicar nuestro conjunto de herramientas para estudiar el genoma 3D en un contexto clínico, estamos abriendo nuevas vías para comprender los trastornos genéticos relacionados con la alteración de la TAD, las llamadas TADopatías.  Los hallazgos de nuestra nueva investigación proporcionan una hoja de ruta para interrogar la patogenicidad potencial de los cambios genéticos asociados a otras TADopatías”, concluye el Martin Franke, investigador del CABD, centro mixto del Consejo Superior de Investigaciones Científicas (CSIC), la Universidad Pablo de Olavide (UPO) y la Junta de Andalucía.

Referencia: 

Daly, A.F., Dunnington, L.A., Rodriguez-Buritica, D.F. et al. ‘Chromatin conformation capture in the clinic: 4C-seq/HiC distinguishes pathogenic from neutral duplications at the GPR101 locus’. Genome Med  112 (2024).


Share

Últimas publicaciones

Navidad con ciencia en Andalucía
Andalucía | 20 de diciembre de 2024

Nos encontramos a menos de un día del solsticio de diciembre, que tendrá lugar a las 10:20 de este sábado, hora española. Esta efeméride marca el comienzo de las estación astronómicas de invierno para el hemisferio norte. Dejamos atrás el otoño, con sus tonalidades amarillas, naranjas y marrones, y damos paso al color blanco de los copos de nieve, a las luces de colores, y a las flores de pascua. Son algunos de los protagonistas de estas fiestas, que también tienen su ciencia. Por ello os proponemos descubrir diferentes curiosidades científicas relacionadas con la Navidad. ¿Sabías que el espumillón comenzó a fabricarse de aluminio y plomo y con el paso del tiempo ha variado su composición para hacerse ahora de PVC? ¿Te has preguntado alguna vez por qué las típicas flores de esta época del año son esas y no otras? ¿ O cuánto consumen las luces led del árbol que adornas cada año?

Sigue leyendo
Descubre aprueba el Plan de Actuación 2025, que impulsa la comunicación social de la innovación y el fortalecimiento del ecosistema andaluz de la comunicación social de la ciencia
Andalucía | 18 de diciembre de 2024

El consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, ha presidido el Patronato celebrado en Sevilla. El Plan prevé el fomento además de la divulgación en el ámbito de la emergencia, la seguridad y la defensa, al tiempo que comenzarán los trabajos para la divulgación del trío de eclipses solares previstos en la Península para 2026, 2027 y 2028. La Fundación ha celebrado previamente el acto de reconocimiento de las personas y entidades Colaboradoras Extraordinarias de Descubre.

Sigue leyendo
Fundación Descubre, la Universidad de Granada y la Embajada de España en Mauritania organizan una expedición matemática a las ciudades de las caravanas
Internacional | 16 de diciembre de 2024

Durante doce días, y con la financiación de la Embajada de España en Mauritania, Álvaro Martínez Sevilla, director científico del proyecto Paseos Matemáticos, en colaboración con el profesor del Departamento de Lenguaje y Sistemas Informáticos de la Universidad de Granada Sergio Alonso, han recorrido las principales localidades que forman esta ruta para recabar información que les permita realizar un estudio matemático geométrico de la arquitectura y decoración local. Con todo el material recopilado, elaborarán la nueva exposición ‘Paseos Matemáticos Al Ándalus y la ruta de las caravanas’ que se inaugurará en 2025 en la capital mauritana y recorrerá también varias ciudades andaluzas.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

404 Not Found

404 Not Found


nginx/1.18.0
Ir al contenido