VOLVER

Share

La UGR lidera un modelo de IA que aprende de rutas reales para anticipar si los turistas volverán a la Alpujarra

El enfoque es completamente novedoso. En lugar de apoyarse en datos contextuales o perfiles de los visitantes, información difícil de obtener en entornos de smart villages, el trabajo modela la movilidad real. La base de datos procede de cámaras de reconocimiento automático de matrículas y cubre un periodo de dos años y once meses, con casi 470.000 vehículos. 

Fuente: Universidad de Granada


Granada |
18 de septiembre de 2025

Un equipo internacional con liderazgo de la Universidad de Granada, desde el grupo de investigación MYDASS del Centro de Investigación en Tecnologías de la Información y la Comunicación (CITIC-UGR), y en colaboración con la Universidad de Surrey (Reino Unido) y la Universidad Northwestern en Qatar, ha desarrollado un método de inteligencia artificial que convierte las rutas de los vehículos en grafos —redes de puntos y conexiones— para predecir si un visitante regresará a la Alpujarra.

El estudio, titulado Route Optimization in Smart Villages: A Graph Neural Network Approach (Optimización de rutas en pueblos inteligentes: un enfoque de redes neuronales gráficas) propone una arquitectura capaz de predecir con un 74% de precisión el retorno de un turista basándose únicamente en la información del trayecto que realiza dentro del destino.

El tiempo que tarda un vehículo en ir de un punto a otro es el dato que mejor anticipa si el visitante volverá.

El enfoque es completamente novedoso. En lugar de apoyarse en datos contextuales o perfiles de los visitantes, información difícil de obtener en entornos de smart villages, el trabajo modela la movilidad real. La base de datos procede de cámaras de reconocimiento automático de matrículas y cubre un periodo de dos años y once meses, con casi 470.000 vehículos. Este volumen y continuidad de observación permiten capturar patrones temporales y de comportamiento que no aparecen en otros tipos de datos, como encuestas.

Las técnicas de explicabilidad del modelo muestran que el tiempo entre cámaras es la característica más influyente para la predicción. En términos prácticos, el tiempo que tarda un vehículo en ir de un punto a otro es el dato que mejor anticipa si el visitante volverá. El modelo propuesto, además de alcanzar ese 74% de precisión en la clasificación, reduce aproximadamente un 20% el tiempo de cómputo frente a alternativas comparables, lo que facilita su despliegue en entornos reales con recursos limitados.

La relevancia del trabajo se centra en la Alpujarra —en concreto, en el caso de uso de Pampaneira, Bubión y Capileira: al aprender de la estructura de las rutas y no de variables difíciles de conseguir, el sistema ofrece una forma robusta y transparente de estimar si los visitantes volverán en el futuro.

La relevancia del trabajo se centra en varios municipios de la Alpujarra.

Con esa evidencia, los implicados (alcaldes, gestores de parques naturales y equipos técnicos) pueden aplicar políticas para planificar de forma informada, evitar masificaciones, dimensionar recursos y mejorar la experiencia de visitantes y residentes; en gestión municipal, orienta decisiones sobre aparcamientos disuasorios, accesos y sentidos de circulación, zonas de parada y programación de servicios —limpieza, transporte lanzadera, señalización y personal de atención— en función de esa probabilidad de retorno. En el ámbito privado, comercios y alojamientos pueden ajustar horarios, oferta y dotación de personal conforme a la probabilidad de que los visitantes repitan

El proyecto ha sido posible gracias a la financiación de la Agencia Estatal de Investigación y de la Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, con cofinanciación del Fondo Europeo de Desarrollo Regional (FEDER). Asimismo, han colaborado diversas entidades locales y regionales, entre ellas los ayuntamientos de la zona y la Diputación de Granada, cuya participación ha sido fundamental para el desarrollo del trabajo. La financiación de los costes de acceso abierto ha sido aportada por la Universidad de Granada/CBUA.

Referencia:

A. Durán-López, D. Bolaños-Martinez, Z. Almahmoud, C. Pravin, S. De and M. Bermudez-Edo, ‘Route Optimization in Smart Villages: A Graph Neural Network Approach’, in IEEE Internet of Things Journal.


Share

Últimas publicaciones

Diseñan un bioplástico con extracto de hoja de mango que retrasa la oxidación de los alimentos
Cádiz | 25 de octubre de 2025

Investigadores de la Universidad de Cádiz han desarrollado una película biodegradable que aprovecha los compuestos naturales de este residuo agrícola para proteger los alimentos frente al deterioro. Con esta innovación se avanza hacia envases más sostenibles, que reducen tanto la dependencia del plástico convencional como el desperdicio de recursos en el campo.

Sigue leyendo
La madrugada del domingo a las tres los relojes se atrasarán una hora
24 de octubre de 2025

Como publica el Real Instituto y Observatorio de la Armada en su web, la madrugada del domingo 26 de octubre, a las tres (las dos en Canarias), los relojes se atrasarán una hora y volverán a ser las dos. A partir de este día las jornadas serán más cortas en términos de luz diurna. Esta medida, que está regulada por directivas de la Unión Europea y es obligatoria para todos los países miembros, tiene defensores y detractores entre la propia comunidad investigadora y ha sido objeto de estudios científicos. Esté a favor o en contra de ella, el domingo no olvide comprobar que su reloj y otros dispositivos móviles se han ajustado al horario de invierno. 

Sigue leyendo
Un trabajo de la UPO revela que la educación de las mujeres impulsa su presencia en política
Sevilla | 23 de octubre de 2025

Un estudio con participación de la Universidad Pablo de Olavide demuestra que elevar el nivel educativo femenino aumenta de forma significativa la representación política de las mujeres en los parlamentos regionales europeos.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido