La Universidad de Sevilla participa en el primer experimento de contextualidad cuántica «sin escapatorias»
El profesor Adán Cabello, del departamento de Física Aplicada II de la Universidad de Sevilla, ha participado en un experimento cuyas conclusiones muestran que obtener los mismos resultados cuando se repiten las medidas no implica que el sistema medido posea esos resultados entre una medida y la siguiente. El fenómeno mostrado en el experimento, al que los físicos se refieren como «contextualidad», está detrás del poder de los ordenadores cuánticos para resolver problemas imposibles para los ordenadores actuales y de la posibilidad de obtener comunicaciones seguras.
Fuente: Universidad de Sevilla
El profesor Adán Cabello, del departamento de Física Aplicada II de la Universidad de Sevilla, ha participado en un experimento cuyas conclusiones muestran que obtener los mismos resultados cuando se repiten las medidas no implica que el sistema medido posea esos resultados entre una medida y la siguiente. El experimento, cuyos resultados han sido publicados en la revista Science Advances, ha sido realizado en la Universidad Tsinghua, en Beijing, por el equipo dirigido por Kihwan Kim.
“Para entender por qué es interesante”, explica Adán Cabello, “supongamos el siguiente juego. Sergio y Mario nos muestran sus manos, con los puños cerrados. Les pedimos que abran, por un instante, una mano cada uno. Solo una. Comprobamos si la mano contiene algo o no. En cada ronda del juego, podemos pedir que abran la misma mano tantas veces como queramos. Después de jugar muchas rondas, comprobamos que, en cada ronda, la mano que Sergio ha abierto o bien siempre tiene algo o bien siempre está vacía. Y lo mismo ocurre con Mario. Si suponemos que, en cada ronda, Sergio y Mario tienen o no tienen algo en cada una de sus manos, se puede demostrar que la suma de unas ciertas probabilidades tiene un límite. Si llamamos S a esta suma, S no puede ser mayor que 2. Sin embargo, en nuestro experimento, S es 2,5». ¿Cómo es posible?
“Es posible”, nos aclara el profesor, “porque Sergio es un ion de iterbio y Mario un ion de bario. Un ion es un átomo cargado eléctricamente. En el experimento, los dos iones están encerrados en una trampa y se usan láseres distintos para hacer las medidas (para que abran las manos). En física cuántica, los sistemas no tienen propiedades cuando no se miden: las propiedades son relativas a las medidas”.
“El experimento es muy importante porque es la primera vez en que, por un lado, las preguntas a Sergio no alteren las respuestas de Mario y viceversa. Por otro lado, al usar iones, Sergio y Mario siempre responden. En otros experimentos (por ejemplo, con fotones) a veces no responden. Además, podemos repetir las medidas en el orden que queramos. Es un experimento único que nos permite comprobar que todo sucede exactamente como predice la física cuántica”, relata el profesor de la Universidad de Sevilla. “El hecho de que tengamos un control tan preciso sobre sistemas tan delicados demuestra lo mucho que hemos avanzado”.
El fenómeno mostrado en el experimento, al que los físicos se refieren como «contextualidad», está detrás del poder de los ordenadores cuánticos para resolver problemas imposibles para los ordenadores actuales y de la posibilidad de obtener comunicaciones seguras.
Referencia bibliográfica:
Significant loophole-free test of Kochen-Specker contextuality using two species of atomic ions; Pengfei Wang; Junhua Zhang; Chun-Yang Luan; Mark Umye Wang; Mu Qiaotian Xiejing-Ning Zhang; Adán Cabello; Kihwan Kim; Science Advances, Vol 8, Issue 6.
Últimas publicaciones
Un novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.
Sigue leyendoEste avance supone un hito en el camino para lograr el dispositivo de fusión más compacto posible, uno de los principales objetivos de los investigadores del Laboratorio de Ciencia del Plasma y Tecnología de Fusión de la Universidad de Sevilla que desarrollan este proyecto. Este paso acerca a la comunidad internacional a la energía de fusión: una fuente de energía sostenible limpia y prácticamente ilimitada.
Sigue leyendoEl CSIC participa en un estudio internacional que ha identificado una nueva función de la proteína responsable de evitar la toxicidad por exceso de sodio. El desarrollo de una nueva técnica analítica para estudiar la nutrición vegetal aporta herramientas biotecnológicas para mejorar la tolerancia de las plantas a suelos salinos.
Sigue leyendo