VOLVER

Share

Un algoritmo predice el rendimiento académico del alumno de educación a distancia

Un equipo de investigadores de la Universidad de Córdoba ha diseñado un modelo basado en lógica difusa que predice el desempeño del alumnado de educación online, ordenándolo en cuatro categorías (abandono, suspenso, aprobado y distinción) y ayudando al profesorado a dar respuestas más personalizadas a cada alumno según su situación. El modelo se alimenta de los datos que el sistema de enseñanza online genera.

Fuente: UCC+i Universidad de Córdoba


Córdoba |
19 de octubre de 2023

La educación a distancia ha democratizado el acceso al conocimiento, eliminando problemas de tiempo y espacio. La flexibilidad y accesibilidad de este tipo de sistemas ha hecho que se incremente el número de personas que se forman a través de plataformas online. Sin embargo, debido a la gran cantidad de estudiantes y a la falta de la interacción cercana que permite el aula, el profesorado se enfrenta a un gran problema: la dificultad de dar seguimiento y adaptar el aprendizaje al alumnado.

Las herramientas basadas en inteligencia artificial pueden ser aliadas de los docentes ayudando a predecir el rendimiento del alumnado para que así puedan adaptar las estrategias educativas a su situación de aprendizaje.

Los investigadores que han participado en el estudio, Francisco Javier Rodríguez, Juan Carlos Gámez y Amelia Zafra.

Para facilitar esa adaptación y mejorar la educación online, un equipo de la Universidad de Córdoba formado por los investigadores Juan Carlos Gámez, Aurora Esteban, Francisco Javier Rodríguez y Amelia Zafra ha desarrollado un algoritmo que realiza una predicción del desempeño del estudiante en 4 clasificaciones distintas. Frente a otros modelos previos que predicen ese desempeño sólo desde la óptica del “aprueba o suspende” o “abandona o continúa” el curso, “este algoritmo basado en clasificación ordinal y lógica difusa permite predecir el desempeño del alumnado manteniendo las relaciones de orden entre las categorías: abandono, suspenso, aprobado y distinción” explica la investigadora del Departamento de Informática y Análisis Numérico de la UCO, Amelia Zafra.

De esta manera, el algoritmo FlexNSLVOrd hace una mejor predicción, pero también permite al profesorado adecuar mejor sus estrategias dependiendo en la clasificación en la que se encuentre el alumnado.

Las dos ventajas que propone este desarrollo son el uso de la clasificación ordinal con una matriz de costo que permite modelar el peso delas clases ordinales en el aprendizaje y, permite hacer ese ranking más específico, y la lógica difusa adaptada que, como señala el investigador del Departamento de Ingeniería Electrónica y de Computadores de la UCO, Juan Carlos Gámez “te permite cierta flexibilidad ya que, por una parte, frente a la lógica estándar que trabaja con valores concretos, la lógica difusa trabaja con un rango de valores, y por otra parte, se adapta automáticamente al problema utilizando un razonamiento más cercano al que hacemos en nuestra vida diaria”.

El modelo se alimenta de los datos que el sistema de enseñanza online genera. Es decir, las características que tiene en cuenta para predecir el rendimiento son, por ejemplo, la realización de tareas específicas y cuestionarios, su nota y los clics que el alumnado hace en los diferentes recursos que hay a disposición en la plataforma.

Para los investigadores, también es destacable la “interpretabilidad”, es decir, la posibilidad de comprender los resultados que arroja. Y es que, tras rastrear este comportamiento del alumnado, el modelo realiza la clasificación, pero también se hace entender, ya que “frente a los algoritmos de caja negra que te dicen si el estudiante aprobará o abandonará, pero no te dicen ni cómo ni por qué”, esta nueva herramienta aporta una serie de reglas para cada categoría que muestran los recursos y las actividades más relevantes que el estudiante debe realizar”, continúa Zafra. Así, el algoritmo podría ayudar al profesorado a identificar a los estudiantes y poder utilizar refuerzos o estrategias que “por ejemplo, rescaten a los estudiantes con problemas”.

De hecho, en este sentido, el algoritmo permite al profesorado incluso saber qué tipo de características son decisivas o no para conocer el desempeño. “Quizás una tarea que el profesor pensaba que era importante para ello, resulta que no es decisiva para saber si va a aprobar o suspender finalmente” amplía Francisco Javier Rodríguez, también investigador del Departamento de Ingeniería Electrónica y de Computadores de la UCO.

El algoritmo se ha comprobado usando un conjunto muy amplio de datos públicos de aprendizaje de Open University (OULAD), disponibles en abierto y que comprende una muestra grande de estudiantes y cursos. El uso a futuro de este algoritmo podría pasar por incluirlo como aplicación en las plataformas de educación online (tipo Moodle) y que, automáticamente, fuese dando retroalimentación del desempeño del alumnado al profesorado.

Referencia:

Gámez-Granados, J.C., Esteban, A., Rodríguez-Lozano, F.J. et al. ‘An algorithm based on fuzzy ordinal classification to predict students’ academic performance’. Appl Intell (2023). https://doi.org/10.1007/s10489-023-04810-2


Share

Últimas publicaciones

Los cambios ambientales del pasado impulsaron la aparición de nuevas especies
Sevilla | 25 de noviembre de 2025

Un estudio internacional en el que participa un investigador de la Universidad de Sevilla, ha analizado el caso del sudeste asiático, una de las regiones con mayor diversidad biológica del planeta, y ha identificado una nueva especie de ardilla, posiblemente la ardilla arborícola más grande del mundo.

Sigue leyendo
Revelan por primera vez un mecanismo esencial para el inicio de la vida en los vertebrados
Sevilla | 25 de noviembre de 2025

Gracias a una herramienta CRISPR que elimina el ARN, investigadores del CABD han observado por primera vez el momento en que el embrión toma el control de su desarrollo. Una modificación química permite al embrión encender su propio genoma y borrar las instrucciones heredadas de la madre para iniciar su formación.

Sigue leyendo
Investigadores de la UCO desarrollan un método más sencillo, sostenible y rápido para detectar drogas en superficies
Córdoba | 24 de noviembre de 2025

El método se ha validado con diferentes tipos de drogas (cocaína, metadona y codeína), diferentes tipos de superficies y con telas de algodón de colores. Su efectividad, combinado con su simplicidad, hacen que el método pueda ser aplicado en ámbitos forenses, de control de drogas, investigaciones de delitos o en laboratorios.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido