VOLVER

Share

Un novedoso estudio con inteligencia artificial muestra la eficacia de tratamientos más cortos en cáncer de mama

La colaboración entre la Escuela Técnica Superior de Ingeniería Informática (ETSII) y el Hospital Virgen del Rocío evidencia un avance significativo en los tratamientos y logra atender a tres personas en lugar de a una y descongestionar las máquinas para otros tratamientos oncológicos.

Fuente: Universidad de Sevilla


Sevilla |
01 de julio de 2024

Un novedoso estudio de minería de datos realizado por la Escuela Técnica Superior de Ingeniería Informática (ETSII) de la Universidad de Sevilla en colaboración con el Servicio de Oncología Radioterápica y Radiofísica del Hospital Virgen del Rocío, muestra que cinco sesiones de tratamiento de radioterapia para pacientes de cáncer de mama, en axila y lecho quirúrgico, obtienen los mismos beneficios de supervivencia, control tumoral y toxicidad que 15, plazo aceptado hasta ahora por la comunidad científica.

Es el resultado de un análisis con inteligencia artificial llevado a cabo con los datos de 113 pacientes de este hospital, diagnosticadas de este tipo de cáncer, datos tratados con técnicas muy especializadas de ingeniería informática aplicada a la salud.

El acceso a este esquema de tratamiento está permitiendo que las mujeres con cáncer de mama tengan que recibir menos radiación.

El acceso a este esquema de tratamiento está permitiendo que las mujeres con cáncer de mama tengan que recibir menos radiación (de 40 grays -dosis de radioterapia- a 26) con una excelente tolerancia, hacer menos viajes al hospital, al tiempo que descongestiona los aceleradores para el resto de los tratamientos, ya que el de mama es uno de los tipos de cáncer más frecuente entre la población.

“Podemos tratar a tres personas en el tiempo en el que antes tratábamos a una. Beneficia al sistema y al paciente”, así lo explica la doctora Paloma Sosa, oncóloga radioterápica del Hospital Virgen del Rocío con más de 10 años de experiencia en cáncer de pulmón y mama, que ha formado parte del análisis.

Informática avanzada

Este estudio ha sido posible gracias al uso de inteligencia artificial, técnicas de machine learning y otras herramientas de informática avanzada como el clustering -agrupación de información-, inyección de datos, reducción de la dimensionalidad de bases de datos o técnicas de explicabilidad en la búsqueda de patrones. “Es un procedimiento muy novedoso, que se está aplicando en algunos hospitales de Estados Unidos y Reino Unido”, afirma Juan Antonio Ortega, profesor del Departamento de Lenguajes y Sistemas de la ETSII y responsable de la investigación por la Universidad de Sevilla, que ha supervisado el desarrollo del estudio de la alumna Kristina Lacasta López.

La implementación de este esquema de tratamiento “hipofraccionado” trae consigo una reducción de las visitas de los pacientes a los hospitales y tiene un impacto muy significativo en las vidas de las personas enfermas, ya que los tratamientos las obligan a recorrer largas distancias, especialmente en ciudades sin instalaciones de radioterapia.

Los investigadores de la Universidad de Sevilla Juan Antonio Ortega y Cristina Lacasta.

Por consiguiente, supone un ahorro económico en la aplicación de tratamientos para el Servicio Andaluz de Salud y para las pacientes en sus tratamientos, pero también en el impacto sobre la huella de carbono, tanto en la energía consumida durante la aplicación de los tratamientos como en las emisiones de CO2 asociadas a los traslados.

Una reducción de la huella de carbono de hasta un 83%, según el análisis elaborado por el doctor Elías Gomis del Servicio de Oncología Radioterápica del Hospital Virgen del Rocío, que ha sido presentado en el último Congreso Europeo de Oncología Radioterápica (ESTRO) y publicado en la revista Clinical and Traslational Oncology.


Share

Últimas publicaciones

Crean un acelerador de modelos de inteligencia artificial hasta un 70% más rápido con menos datos
Cádiz | 05 de julio de 2025

Un equipo de investigación de la Universidad de Cádiz ha creado REDIBAGG, un método que acelera el entrenamiento de modelos de inteligencia artificial hasta un 70%, al utilizar menos datos pero sin perder precisión. La técnica tiene potencial para analizar grandes volúmenes de información en campos tan diversos como la medicina, la industria o las finanzas.

Sigue leyendo
Diseñan un método rápido y eficaz para medir las prácticas que conservan la dehesa
Córdoba | 03 de julio de 2025

Un equipo de la Universidad de Córdoba en colaboración con otras entidades y equipos de investigación de España y Portugal,  desarrolla un nuevo método que permite evaluar de manera sencilla el estado de calidad de las dehesas en función de una serie de buenas prácticas relacionadas con la biodiversidad, la productividad de los pastos o el manejo de la arboleda.

Sigue leyendo
Un estudio revela que el ayuno intermitente impulsa la memoria y la atención en personas con obesidad
Málaga | 03 de julio de 2025

El ayuno intermitente en días alternos no solo ayuda a adelgazar: un estudio de IBIMA demuestra que este patrón alimentario, al remodelar la microbiota intestinal y frenar la inflamación sistémica, mejora de forma significativa la memoria, la atención y el control inhibitorio en adultos con obesidad. La investigación allana el camino hacia una “nutrición de precisión para el cerebro”.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido