VOLVER

Share

Un nuevo sistema planetario compuesto por una supertierra y un minineptuno, clave para entender cómo se forman los planetas

El Instituto de Astrofísica de Andalucía (IAA-CSIC) encabeza el hallazgo de TOI-2096, un sistema planetario único en su especie. Denominado TOI-2096, está compuesto por una supertierra y un minineptuno, que orbitan una estrella fría y cercana en un baile sincronizado y que podría funcionar como una piedra Rosetta para comprender cómo funciona la gestación planetaria.

Fuente: Instituto Andaluz de Astrofísica, IAA - CSIC


Granada |
24 de marzo de 2023

Un equipo científico, encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) y con la participación de la Universidad de Granada, ha descubierto un sistema planetario único. Denominado TOI-2096, está compuesto por una supertierra y un minineptuno, que orbitan una estrella fría y cercana en un baile sincronizado y que podría funcionar como una piedra Rosetta para comprender cómo funciona la gestación planetaria.

El sistema fue identificado por la misión Transiting Exoplanet Survey Satellite (TESS) de la NASA, una misión espacial que busca planetas alrededor de estrellas cercanas y brillantes. “TESS está realizando una búsqueda de planetas por todo el cielo utilizando el método de tránsito, es decir, monitoreando el brillo estelar de miles de estrellas cercanas en espera de un ligero oscurecimiento, que podría ser causado por el paso de un planeta entre la estrella y el observador. Sin embargo, a pesar de su poder para detectar nuevos mundos, la misión TESS necesita apoyo de telescopios en tierra para confirmar la naturaleza planetaria de las señales detectadas”, explica Francisco J. Pozuelos Romero, investigador del IAA-CSIC y autor principal del trabajo.

Una configuración muy particular

“Los planetas TOI-2096 b (supertierra) y TOI-2096 c (minineptuno), fueron observados con una red internacional de telescopios terrestres, permitiendo así su confirmación y caracterización. “Haciendo un análisis exhaustivo de los datos, encontramos que los dos planetas se encontraban en órbitas resonantes, es decir, por cada dos órbitas de TOI-2096 b, TOI-2096 c realiza una. Esta configuración es muy particular y debido a ella los planetas interactúan fuertemente de manera gravitatoria, lo que permite obtener sus masas, algo que estamos haciendo justo ahora con medidas ultraprecisas del telescopio de 2.2 metros del Observatorio de Calar Alto” señala Pedro J. Amado, investigador del IAA-CSIC y coautor del artículo.

Descubren un sistema planetario único, denominado TOI-2096, compuesto por una supertierra y un minineptuno / IAA-CSIC

Descubren un sistema planetario único, denominado TOI-2096, compuesto por una supertierra y un minineptuno / IAA-CSIC

Los investigadores estiman que el radio de TOI-2096 b es 1.2 veces mayor que el del planeta Tierra (de ahí la denominación de supertierra). Asimismo, el radio de TOI-2096 c es un 55% más pequeño que el de Neptuno (1.9 veces radios terrestres), por lo que se le denomina minineptuno.  Estos tamaños son realmente interesantes pues podrían arrojar luz sobre la anomalía conocida como Valle del Radio, es decir, la ausencia de exoplanetas con radios entre 1.5 y 2.5 radios terrestres, algo que hoy día no cuenta con una explicación aceptada.

“Gracias al análisis global realizado en los servidores de computación de alto rendimiento de la Universidad de Granada pudimos entender que se trata de un sistema único –apunta Juan Carlos Suárez, investigador de la Universidad de Granada y también coautor del estudio–. La formación de planetas pequeños, de menos de cuatro radios terrestres, sigue siendo hoy día un misterio, ya que existen diferentes modelos que intentan explicar cómo se forman los planetas con tamaños entre la Tierra y Neptuno, pero ninguno acaba de ajustarse a las observaciones. TOI-2096 es el único sistema conocido que tiene un planeta pequeño, probablemente rocoso, y uno más grande con el tamaño justo donde todos los modelos se contradicen. Es decir, TOI-2096 puede ser la piedra Rosetta que estábamos buscando para entender cómo se forman los sistemas planetarios”.

“Además, gracias al tamaño relativo de estos planetas y su estrella, junto con el brillo de esta, este sistema se halla entre los mejores para estudios en detalle con telescopio espacial James Webb, para lo que nos estamos coordinando con otras universidades y centros de investigación. Estos estudios nos permitirán saber con más precisión cómo se formó el sistema y si, como creemos, el planeta TOI-2096 c es un mundo oceánico, lo que abriría todo un abanico de posibilidades para futuros estudios”, concluye Francisco J. Pozuelos (IAA-CSIC).

Referencia: 

F.J. Pozuelos, et al. A super-Earth and a mini-Neptune near the 2:1 MMR straddling the radius valley around the nearby mid-M dwarf TOI-2096Astronomy & Astrophysicshttps://doi.org/10.1051/0004-6361/202245440


Share

Últimas publicaciones

Una spin-off de la UPO revoluciona la investigación biomédica con un compuesto para tratar el Alzheimer y el Parkinson
Sevilla | 06 de junio de 2025

Olavide Neuron STX, S.L. capta un millón de euros para impulsar el desarrollo de ONESTX-1. Inversores como Axon Desarrollo Andalucía, Anecon Inversiones, Biomedal, Eoniq Fund y Francisco León apuestan por un tratamiento innovador para enfermedades del envejecimiento.

Sigue leyendo
Un proyecto de ciencia ciudadana elabora un kit de materiales divulgativos sobre el ecosistema semiárido almeriense
Almería | 04 de junio de 2025

Un centenar de científicos ciudadanos del IES El Alquián han elaborado un póster científico, una guía de plantas, maquetas y una presentación didáctica sobre el entorno del centro para destacar su importancia ecológica y la necesidad de su conservación. Esta iniciativa está apoyada por la Oficina de Ciencia Ciudadana de Andalucía, impulsada por la Consejería de Universidad y coordinada por Fundación Descubre y la Universidad Pablo de Olavide. 

Sigue leyendo
Nueva hipótesis sobre el origen de la vida: la Tierra funcionó como una máquina de PCR
Sevilla | 04 de junio de 2025

El catedrático de Genética de la Universidad Pablo de Olavide, Juan Jiménez, propone que los ciclos térmicos del planeta pudieron impulsar la formación de las primeras moléculas vivas. Esta nueva teoría representa un nuevo marco de entendimiento e investigación sobre la transición de un planeta químico a un planeta vivo.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido