Un sistema con Inteligencia Artificial anticipa la cosecha de olivar en municipios de Jaén, Córdoba y Granada
Tras más de tres años de trabajo, el Grupo Operativo Predic I llega a su fin. Este consorcio, conformado por la Universidad de Jaén, Cetemet, Citoliva, Cooperativas Agro-alimentarias de Andalucía y Nutesca, ha desarrollado un sistema para predecir con antelación, -justo al cierre de la campaña de recolección anterior-, la cantidad de la próxima cosecha en olivos de los municipios de Jaén, Córdoba y Granada.
Fuente: Universidad de Jaén
El Grupo Operativo Predic I ha llegado a su fin. Se trata de un sistema experto accesible y fácil de utilizar por el usuario, al estar implementado en una aplicación web. El agricultor o gestor de la finca que utilice la aplicación accede con un perfil específico, en el que selecciona la predicción que necesita conocer. También puede exportar la información en el formato que desee o, simplemente, visualizar una representación gráfica de los resultados, a nivel de municipio o también de explotación.
No en vano, la metodología contempla un estudio multiescala, esto es, se han seleccionado las provincias de Jaén, Córdoba y Granada y se han realizado predicciones de cosecha a nivel de municipio. Por otro lado, se han seleccionado cinco fincas en cada una de las provincias citadas, sumando así un total de 15 explotaciones, todas ellas con características similares en cuanto a la tipología de olivar. En este caso, plantaciones de olivos en marco tradicional y de variedad picual.
Según argumenta Francisco Ramón Feito, catedrático de la Universidad de Jaén y coordinador técnico del proyecto, el modelo desarrollado por Predic I se basa en Inteligencia Artificial y algoritmos de precisión. En concreto, se ha utilizado el algoritmo SVM con Kernel Lineal y Gaussiano, siendo el primero el que proporciona una mayor precisión predictiva. Además, la integración de los índices de vegetación en el modelo mejora la predicción del rendimiento del cultivo. Esto es debido a que un mejor diagnóstico del estado de la plantación contribuye a una buena predicción temprana de su producción.
También se ha contado con imágenes de satélite, que han sido fundamentales para disponer de una temporalidad suficiente que cubra todos los municipios de las provincias de Jaén, Córdoba y Granada.
El sistema desarrollado por este grupo operativo es, además, capaz de evolucionar, ya que la retroalimentación del mismo con información de nuevas campañas permitirá generar modelos predictivos cada vez más eficientes y más ajustado a cada zona objeto de estudio, afirma Francisco Feito.
Pero, además de predicción de cosechas, esta tecnología permite realizar consultas sobre producciones históricas de las explotaciones, para analizar el comportamiento dinámico del cultivo a lo largo del tiempo.
Este proyecto está financiado a través de los Fondos Europeos Agrícolas de Desarrollo Rural (FEADER) y cofinanciado por la Consejería de Agricultura, Pesca, Agua y Desarrollo Rural de la Junta de Andalucía en la convocatoria para el Funcionamiento de Grupos Operativos Regionales de la Asociación Europea de Innovación (AEI) en materia de productividad y sostenibilidad agrícola en el sector del olivar.
Últimas publicaciones
El objetivo del Plan, con una vigencia de cinco años, es garantizar la plena igualdad de trato y oportunidades de mujeres y hombres, consolidando un camino ya emprendido por la organización, promovida por la Consejería de Universidad, Investigación e Innovación
Sigue leyendoEl Espacio Creativo Cultural Santa Clara del Ayuntamiento de Palma del Río acoge la exposición ‘Paseo Matemático al-Ándalus’ de la Fundación Descubre / Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía, una muestra que podrá visitarse hasta el próximo 14 de octubre.
Sigue leyendoUn equipo de investigación de la Universidad de Málaga presenta una herramienta estadística para identificar de forma precisa conexiones cerebrales incluso cuando la señal está distorsionada e incompleta. Este modelo es aplicable a contextos clínicos como el estudio de enfermedades neurodegenerativas como el Alzheimer o el Parkinson, el procesamiento del lenguaje o el desarrollo neurotecnológico.