VOLVER

Share

Un “supermicroscopio” único en el mundo permite a científicos sevillanos resolver uno de los enigmas de la biología básica

Un equipo internacional de científicos, coordinado por el Instituto de Biomedicina de Sevilla – IBiS/Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla, han observado cómo los lípidos distribuyen las proteínas dentro de las células, un descubrimiento que podría abrir la puerta a entender las causas de enfermedades relacionadas con el transporte de proteínas, como el cáncer o enfermedades neurodegenerativas.

Fuente: Universidad de Sevilla


Sevilla |
14 de diciembre de 2020

Un equipo internacional de científicos, coordinado por el Instituto de Biomedicina de Sevilla – IBiS/Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla, ha solucionado uno de los enigmas de la biología básica que aún no tenía respuesta: cómo los lípidos distribuyen exactamente las proteínas dentro de una célula. Para ello, han empleado una nueva tecnología de microscopía, completamente innovadora, que han aplicado a células ‘mutantes’ diseñadas por ellos mismos en su laboratorio.

Los primeros autores del trabajo, Sofía Rodríguez y Kazuo Kurokawa junto al microscopio de super-res.

Este descubrimiento, que publica la prestigiosa revista Science Advances, supone un gran avance para entender cómo se distribuyen las proteínas en la célula para realizar sus funciones vitales y, por tanto, podría abrir la puerta a conocer las causas de enfermedades asociadas con fallos en la distribución de proteínas a nivel celular: desde el cáncer hasta enfermedades neurodegenerativas, como el Alzheimer.

El trabajo ha sido realizado por el grupo de investigación Tráfico de membranas del departamento de Biología Celular de la Facultad de Biología de la Universidad de Sevilla y del IBiS, que dirige el profesor Manuel Muñiz Guinea, en colaboración con las universidades de Hiroshima (Japón), Ginebra y Friburgo (Suiza). En el mismo ha participado, además, el Instituto RIKEN de Japón, donde se encuentra el Laboratorio de “Microscopía de super-resolución en célula viva”, una instalación única en el mundo donde se han llevado a cabo los análisis utilizando un microscopio de fluorescencia con una gran resolución que permite estudiar procesos muy rápidos y dinámicos en la célula viva a una escala increíblemente pequeña.

Como explica Manuel Muñiz, “la célula es la unidad básica de la vida y, a su vez, una máquina extremadamente compleja y sofisticada en la que miles de proteínas, entre otros componentes, se ubican estratégicamente en diferentes compartimentos donde llevan a cabo las funciones celulares”. La célula debe asegurar que sus proteínas se distribuyan correctamente hacia su lugar de funcionamiento, ya que, si esto falla y no alcanzan su destino, las proteínas o dejan de funcionar o se descontrolan, provocando enfermedades que van desde síndromes genéticos hasta cáncer o enfermedades neurológicas. Por tanto, es importante investigar como las proteínas son distribuidas hacia su destino funcional.

Hace muchos años se había propuesto que, además de la maquinaria convencional de transporte de proteínas de la célula (cuyo descubrimiento recibió el Premio Nobel de Medicina el año 2013), los lípidos que componen las membranas celulares también podrían jugar un papel adicional en la distribución de las proteínas dentro la célula. Este trabajo de los investigadores sevillanos solventa este enigma de la biología básica, demostrando por primera vez cómo los lípidos son capaces de distribuir a las proteínas a nivel celular.

Puertas de salida moleculares
Las proteínas son fabricadas en un compartimento de la célula y luego tienen que distribuirse de forma correcta saliendo por unas “puertas” específicas. En este trabajo, los científicos sevillanos han descubierto que los lípidos de membrana son los encargados de seleccionar y dirigir a ciertas proteínas hacia las puertas de salida correctas.

Para ello, han diseñado una “célula mutante” que fue programada para fabricar una versión acortada de unos lípidos celulares denominados ceramidas.  Los autores sospechaban que la longitud de estos lípidos podría ser determinante para la elección de la puerta de salida adecuada.

“Y efectivamente, así ha sido –explica el investigador del IBiS-. Gracias a estas ceramidas cortas generadas por nosotros, hemos podido demostrar por primera vez que los lípidos son capaces de guiar a las proteínas durante su transporte solo si tienen la longitud adecuada. Además, el uso de un ‘supermicroscopio’ tan potente como el que hemos empleado nos ha permitido captar también por primera vez a una escala ultra pequeña y en vivo cómo las proteínas salen por estas puertas moleculares”.

Modelo de levadura
Como curiosidad, este estudio se ha realizado utilizando células de levadura (el mismo hongo unicelular que se utiliza para hacer pan, cerveza y vino) como organismo modelo, “ya que, al ser células eucariotas como las nuestras, realizan los mismos procesos celulares básicos de forma muy parecida, por lo que las observaciones se pueden extrapolar a células humanas”, explica el profesor de la US.

Sin embargo, al ser también más simple y poderse manipular genéticamente con gran efectividad, “las células de levadura son un modelo fabuloso para entender el funcionamiento a nivel fundamental de la célula humana y qué produce las enfermedades, como lo demuestra el hecho de que se hayan concedido varios Premios Nobel de Medicina a investigadores que usaron este microorganismo en sus estudios, como Paul Nurse o Randy Schekman”.

Como conclusión, Manuel Muñiz explica que este artículo publicado en Science Advances “también ha servido para demostrar que los lípidos y proteínas se influyen mutuamente para autoorganizarse conjuntamente dentro de la célula”, y apunta que el mecanismo que han descubierto por el que lo hacen “podría ser utilizado en otros procesos como la entrada y salida de ciertos virus de la célula, así como en la formación de los exosomas (vesículas lipídicas extracelulares que intervienen en la comunicación entre células y tienen una gran implicación, especialmente en cáncer)”.

Referencia bibliográfica: Rodriguez-Gallardo et al., Sci. Adv. 2020; VOL6, ISSUE 49: eaba8237 11 December 2020


Share

Últimas publicaciones

Investigadores trabajan en un proyecto para cultivar hortalizas y generar energía eléctrica de forma simultánea
Sevilla | 18 de julio de 2024

Investigadores de la Universidad de Sevilla y la Universidad Politécnica de Madrid trabajan en un proyecto que persigue explorar las posibilidades de cultivar hortalizas al mismo tiempo que se genera energía eléctrica mediante paneles solares. El ahorro de agua o el uso más eficiente del territorio son algunos de los beneficios que espera aportar esta investigación.

Sigue leyendo
Avances en las enfermedades mitocondriales gracias al análisis de nuevas variantes génicas
Sevilla | 17 de julio de 2024

Un estudio del CABD, liderado por el catedrático de la Universidad Pablo de Olavide Carlos Santos Ocaña, identifica nuevas variantes genéticas del gen COQ7 y su relación con la deficiencia de Coenzima Q10 en pacientes pediátricos. La investigación ha distinguido claves genéticas que pueden mejorar diagnóstico y tratamiento de enfermedades mitocondriales.

Sigue leyendo
Un estudio compara el sistema más eficaz para gestionar el consumo de agua en agricultura
Córdoba | 16 de julio de 2024

A partir de un modelo de programación matemática, el estudio realizado por el grupo WEARE de la Universidad de Córdoba, pone de manifiesto que la asignación proporcional de agua, y no el impuesto adicional al recurso, es más eficaz desde el punto de vista de quienes se dedican a la agricultura.

Sigue leyendo

#CienciaDirecta

Tu fuente de noticias sobre ciencia andaluza

Más información Suscríbete

Ir al contenido