Utilizan inteligencia artificial para predecir el umami o “quinto sabor” en las comidas, asociado a las proteínas de los alimentos
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas. La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal.
Fuente: Universidad de Granada
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas.
La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal. El equipo científico ha conseguido crear un algoritmo de aprendizaje automático, denominado VirtuousUmami. Su empleo allana el camino hacia la racionalización de las características moleculares del sabor umami y hacia el diseño de compuestos específicos inspirados en péptidos con propiedades gustativas específicas.
La herramienta desarrollada toma como entrada la estructura de la molécula de consulta y la convierte en un formato adecuado legible por computador y, a continuación, predice el sabor umami utilizando el modelo de aprendizaje automático. El proyecto H2020 que dirige Vanessa Martos, coordinado por el Politécnico de Turín (Italia), une las Ciencias Agroalimentarias y la Inteligencia Artificial.
Referencia bibliográfica:
Pallante, L., Korfiati, A., Androutsos, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 12, 21735 (2022). https://doi.org/10.1038/s41598-022-25935-3
Últimas publicaciones
La Sociedad Andaluza para la Divulgación de la Ciencia y la Fundación Descubre, promovida por la Consejería de Universidad, Investigación e Innovación, organizan este foro de ideas en el que un grupo de estudiantes aborda temas científicos relacionados con el calentamiento global y la crisis ambiental.
La clausura de esta iniciativa, en la que se celebra la asamblea final, ha estado presidida por el consejero de Universidad, Investigación e Innovación, José Carlos Gómez Villamandos, y la vicepresidenta del Parlamento de Andalucía Ana Mestre.
Se trata de una lámina delgada que recubre nanogeneradores que producen electricidad mediante el impacto de las gotas de lluvia. Además, al mismo tiempo, mejora la durabilidad de las celdas fotovoltaicas. El trabajo, desarrollado por el Instituto de Ciencia de Materiales de Sevilla (ICMS) abre nuevas vías para desarrollar sistemas electrónicos autónomos destinados a ser utilizados en exteriores.
Sigue leyendoUn equipo de investigación del IFAPA Alameda del Obispo de Córdoba ha analizado la evolución del atún en salazón durante su almacenamiento refrigerado a lo largo de un periodo de hasta nueve meses. Los resultados aportan criterios científicos que respaldan los plazos de conservación y facilitan la gestión del etiquetado y el control de calidad de este producto tradicional.
Sigue leyendo



