Utilizan inteligencia artificial para predecir el umami o “quinto sabor” en las comidas, asociado a las proteínas de los alimentos
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas. La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal.
Fuente: Universidad de Granada
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas.
La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal. El equipo científico ha conseguido crear un algoritmo de aprendizaje automático, denominado VirtuousUmami. Su empleo allana el camino hacia la racionalización de las características moleculares del sabor umami y hacia el diseño de compuestos específicos inspirados en péptidos con propiedades gustativas específicas.
La herramienta desarrollada toma como entrada la estructura de la molécula de consulta y la convierte en un formato adecuado legible por computador y, a continuación, predice el sabor umami utilizando el modelo de aprendizaje automático. El proyecto H2020 que dirige Vanessa Martos, coordinado por el Politécnico de Turín (Italia), une las Ciencias Agroalimentarias y la Inteligencia Artificial.
Referencia bibliográfica:
Pallante, L., Korfiati, A., Androutsos, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 12, 21735 (2022). https://doi.org/10.1038/s41598-022-25935-3
Últimas publicaciones
El secretario general de Investigación de la Junta destaca en la inauguración que la nueva Ley ACTIVA reforzará la divulgación y la cultura científicas en la comunidad. La cita, organizada por la Consejería de Universidad y coordinada por la Fundación Descubre, prevé para este año la participación de más de 28.700 personas.
Sigue leyendoInvestigadores de la Universidad de Almería definen factores relacionados con las dificultades de pacientes con trastorno por déficit de atención e hiperactividad y trastorno obsesivo-compulsivo para adaptarse al entorno. Una distinta sensibilidad al castigo y a la recompensa, junto con diferencias en la conectividad en ambos hemisferios del cerebro, ayudan a explicar síntomas como el miedo al error o la excesiva flexibilidad, que pueden servir a los profesionales para adaptar su terapia.
Sigue leyendoLos investigadores han conseguido transformar este residuo en fertilizantes que enriquecen las hortalizas con hierro y zinc mientras reducen metales tóxicos como cadmio y mercurio.
Sigue leyendo



        