Utilizan inteligencia artificial para predecir el umami o “quinto sabor” en las comidas, asociado a las proteínas de los alimentos
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas. La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal.
Fuente: Universidad de Granada
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas.
La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal. El equipo científico ha conseguido crear un algoritmo de aprendizaje automático, denominado VirtuousUmami. Su empleo allana el camino hacia la racionalización de las características moleculares del sabor umami y hacia el diseño de compuestos específicos inspirados en péptidos con propiedades gustativas específicas.
La herramienta desarrollada toma como entrada la estructura de la molécula de consulta y la convierte en un formato adecuado legible por computador y, a continuación, predice el sabor umami utilizando el modelo de aprendizaje automático. El proyecto H2020 que dirige Vanessa Martos, coordinado por el Politécnico de Turín (Italia), une las Ciencias Agroalimentarias y la Inteligencia Artificial.
Referencia bibliográfica:
Pallante, L., Korfiati, A., Androutsos, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 12, 21735 (2022). https://doi.org/10.1038/s41598-022-25935-3
Últimas publicaciones
Un equipo de investigación andaluz ha obtenido este aderezo para ensalada a base fibra de esta leguminosa sin ningún aditivo químico para estabilizarlo. Para ello, transforman las propiedades iniciales de la fibra de la vaina con altas presiones, obligándolo a fluir a través de una serie de microcanales. Así, sus propiedades iniciales se transforman para retener más agua y mantener el alimento estable más tiempo, añadiéndole ventajas nutricionales.
Sigue leyendoEl secretario general de Investigación e Innovación de la Consejería de Universidad ha presidido en Sevilla el Patronato de la entidad. El impulso a la comunicación social de la ciencia y la innovación con nuevas narrativas digitales y la incorporación de la IA son las principales apuesta del Plan, alineado con la Ley ACTIVA.
Sigue leyendoPredecir cómo responderá la biodiversidad ante el cambio global requiere estudiar más allá de la especie como unidad básica y tener en cuenta la variabilidad individual. Así lo indica un equipo de científicos de la Estación Biológica de Doñana-CSIC en una investigación publicada en la revista Ecological Monographs.
Sigue leyendo



