Utilizan inteligencia artificial para predecir el umami o “quinto sabor” en las comidas, asociado a las proteínas de los alimentos
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas. La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal.
Fuente: Universidad de Granada
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas.
La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal. El equipo científico ha conseguido crear un algoritmo de aprendizaje automático, denominado VirtuousUmami. Su empleo allana el camino hacia la racionalización de las características moleculares del sabor umami y hacia el diseño de compuestos específicos inspirados en péptidos con propiedades gustativas específicas.
La herramienta desarrollada toma como entrada la estructura de la molécula de consulta y la convierte en un formato adecuado legible por computador y, a continuación, predice el sabor umami utilizando el modelo de aprendizaje automático. El proyecto H2020 que dirige Vanessa Martos, coordinado por el Politécnico de Turín (Italia), une las Ciencias Agroalimentarias y la Inteligencia Artificial.
Referencia bibliográfica:
Pallante, L., Korfiati, A., Androutsos, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 12, 21735 (2022). https://doi.org/10.1038/s41598-022-25935-3
Últimas publicaciones
Está financiado por el Instituto de Estudios Giennenses y es “pionero en su enfoque”, ya que persigue determinar si estos contaminantes pueden ser considerados como nuevos factores de riesgo en enfermedades cardiovasculares, pudiendo ayudar a desarrollar estrategias de prevención y tratamiento, así como a concienciar sobre los riesgos de los contaminantes ambientales
Sigue leyendoUn equipo de la Universidad de Granada, la Universidad Pública de Navarra y el CIBER ha demostrado que el ayuno intermitente es un método eficaz para perder peso y al tiempo que mejora la salud cardiovascular en personas con problemas de obesidad. Su trabajo revela que realizar la última ingesta de comida antes de las 17 horas y después no cenar por la noche es una estrategia segura y eficaz para reducir la grasa subcutánea abdominal.
Sigue leyendoUn equipo del Instituto Universitario de Investigación Marina (INMAR) de la Universidad de Cádiz ha aplicado un modelo matemático para el seguimiento de las partículas que se vierten en la desembocadura de los ríos gaditanos. Con él ha observado cómo estos contaminantes se mueven y se acumulan en el océano. Este estudio proporciona información clave para diseñar estrategias que protejan los ecosistemas marinos y garanticen un futuro más sostenible.