Utilizan inteligencia artificial para predecir el umami o “quinto sabor” en las comidas, asociado a las proteínas de los alimentos
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas. La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal.
Fuente: Universidad de Granada
El sabor umami o “quinto sabor” se asocia con el contenido en péptidos y proteínas de los alimentos, por lo que desempeña un papel crucial en la regulación de la ingesta rica en proteínas, fundamentales para el bienestar humano. Ahora, la Universidad de Granada ha participado en un estudio internacional que ha conseguido, mediante inteligencia artificial, predecir el sabor umami en los ingredientes de las comidas.
La catedrática del Departamento de Fisiología Vegetal Vanessa Martos Núñez es coautora de esta investigación, enmarcada dentro del proyecto europeo H2020 VIRTUOUS, del que es investigadora principal. El equipo científico ha conseguido crear un algoritmo de aprendizaje automático, denominado VirtuousUmami. Su empleo allana el camino hacia la racionalización de las características moleculares del sabor umami y hacia el diseño de compuestos específicos inspirados en péptidos con propiedades gustativas específicas.
La herramienta desarrollada toma como entrada la estructura de la molécula de consulta y la convierte en un formato adecuado legible por computador y, a continuación, predice el sabor umami utilizando el modelo de aprendizaje automático. El proyecto H2020 que dirige Vanessa Martos, coordinado por el Politécnico de Turín (Italia), une las Ciencias Agroalimentarias y la Inteligencia Artificial.
Referencia bibliográfica:
Pallante, L., Korfiati, A., Androutsos, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci Rep 12, 21735 (2022). https://doi.org/10.1038/s41598-022-25935-3
Últimas publicaciones
Un equipo de investigación de la Universidad de Cádiz ha creado REDIBAGG, un método que acelera el entrenamiento de modelos de inteligencia artificial hasta un 70%, al utilizar menos datos pero sin perder precisión. La técnica tiene potencial para analizar grandes volúmenes de información en campos tan diversos como la medicina, la industria o las finanzas.
Sigue leyendoUn equipo de la Universidad de Córdoba en colaboración con otras entidades y equipos de investigación de España y Portugal, desarrolla un nuevo método que permite evaluar de manera sencilla el estado de calidad de las dehesas en función de una serie de buenas prácticas relacionadas con la biodiversidad, la productividad de los pastos o el manejo de la arboleda.
Sigue leyendoEl ayuno intermitente en días alternos no solo ayuda a adelgazar: un estudio de IBIMA demuestra que este patrón alimentario, al remodelar la microbiota intestinal y frenar la inflamación sistémica, mejora de forma significativa la memoria, la atención y el control inhibitorio en adultos con obesidad. La investigación allana el camino hacia una “nutrición de precisión para el cerebro”.
Sigue leyendo