Utilizan la inteligencia artificial para mejorar la resolución de imágenes de resonancia magnética del cerebro
El método diseñado por investigadores de la Universidad de Málaga permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias. Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.
Fuente: Universidad de Málaga
Investigadores del Grupo ICAI -Inteligencia Computacional y Análisis de Imágenes- de la Universidad de Málaga han diseñado un método inédito capaz de mejorar las imágenes del cerebro obtenidas por resonancia magnética usando la inteligencia artificial.

Este método permite detectar patologías con mayor precisión y nitidez, sin necesidad de pruebas complementarias.
Se trata de un nuevo modelo que ha permitido que las imágenes pasen de baja resolución a alta, sin distorsionar las estructuras cerebrales de los pacientes, utilizando una red neuronal artificial profunda –modelo inspirado en el funcionamiento del cerebro humano- que ‘aprende’ este proceso.
“El aprendizaje profundo está basado en redes neuronales muy extensas, con lo que su capacidad para aprender lo es también, alcanzando la complejidad y abstracción de un cerebro”, explica el investigador Karl Thurnhofer, autor principal de este estudio, que señala que gracias a esta técnica se pueden realizar tareas de identificación por sí mismas, sin supervisión, de las que ni el ojo humano sería capaz.
Este avance investigador ha sido publicado por la revista científica ‘Neurocomputing’, que recoge como el algoritmo desarrollado en la UMA obtiene resultados de mayor precisión en menos tiempo, con claros beneficios para los pacientes. “Hasta ahora la adquisición de imágenes cerebrales de calidad dependían del tiempo que el paciente estuviera inmovilizado en el escáner, con nuestro método el procesamiento de la imagen se hace posteriormente en el ordenador”, aclara Thurnhofer.
Según los expertos, los resultados permitirán a los especialistas identificar de forma más nítida y precisa patologías relacionadas con el cerebro como lesiones físicas, cánceres o trastornos del lenguaje, entre otras, ya que los detalles de las imágenes son más finos, evitando así tener que recurrir a pruebas complementarias ante diagnósticos dudosos.
El Grupo ICAI de la UMA, que dirige el catedrático Ezequiel López, también autor de este trabajo, es hoy referente en neurocomputación, aprendizaje computacional e inteligencia artificial. Los profesores del Departamento de Lenguajes y Ciencias de la Computación Enrique Domínguez y Rafael Luque, así como la investigadora Núria Roé-Vellvé, también han participado en el estudio.
Últimas publicaciones
La entidad andaluza, que coordina el proyecto Turismo Científico, incorpora a la iniciativa 13 nuevos promotores de Andalucía, Canarias, Galicia y Comunidad de Madrid.
Sigue leyendoLa Fundación Descubre, promovida por la Consejería de Universidad, Investigación e Innovación, y la Fundación MAS han firmado un convenio de colaboración entre ambas entidades con el objetivo de promover acciones conjuntas en materia de comunicación social de la ciencia y la tecnología.
Sigue leyendoEste proyecto de la Universidad de Sevilla busca sentar las bases para que el ejercicio de fuerza monitorizado se convierta en una herramienta terapéutica integrada en los sistemas de salud pública. Propone un enfoque revolucionario que combina entrenamiento de fuerza utilizando tecnología inercial con un componente cognitivo en tiempo real, monitorizando la respuesta del paciente mediante tecnologías avanzadas habituales del alto rendimiento deportivo.
Sigue leyendo