Constatan como un leve cambio en las relaciones existentes en un ecosistema determina el comportamiento de sus especies
Un equipo de expertos de la Universidad de Cádiz, la Estación Biológica de Doñana, el Instituto de Tecnología de Massachusetts en EE.UU. y la Universidad de Friburgo en Suiza han demostrado que alterar las interacciones que se producen en un ecosistema, como eliminar una especie de éste, transforma el comportamiento de toda la comunidad de plantas y animales de manera difícil de predecir. Esto significa que la eliminación de especies puede tener un efecto en cascada sobre el resto del ecosistema que se desconoce y que se puede estar subestimando.
Fuente: Universidad de Cádiz
Los investigadores Óscar Godoy, del departamento de Biología de la Universidad de Cádiz y adscrito al Instituto Universitario de Investigación Marina (INMAR), e Ignasi Bartomeus, de la Estación Biológica de Doñana del Consejo Superior de Investigaciones Científicas (CSIC), junto a expertos del Instituto de Tecnología de Massachusetts en EE.UU. y de la Universidad de Friburgo en Suiza han publicado un artículo científico en la prestigiosa revista PNAS, en el que muestran los resultados de una investigación donde se constata que alterar las interacciones que se producen en un ecosistema, como eliminar una especie de éste, transforma el comportamiento de toda la comunidad de plantas y animales de manera difícil de predecir. Esto significa que la eliminación de especies puede tener un efecto en cascada sobre el resto del ecosistema que se desconoce y que se puede estar subestimando.
Para desarrollar esta investigación se construyeron 17 cajas de malla de 3 metros cúbicos cada una y en ellas se pusieron plantas e insectos de diferentes especies. El experimento consistió en estudiar cómo interaccionan las plantas y los insectos todos con todos, así como ver el estado de cada especie. Una vez analizado esto, se limitó el acceso de una especie de abejorro a las flores de la planta que más visitaba para comer (planta de la mostaza, en el estudio). En este caso, “para el abejorro desapareció su planta favorita. Sin flores donde comer, la planta no existe para ellos”. Tras romper esta interacción, se estudió lo que le pasaba al resto de especies. El investigador Óscar Godoy explica que “hemos trabajado también con modelos matemáticos y en ellos estos efectos en cascada no se consideraban porque al eliminar una interacción (pasa a tener valor 0), el resto de la red de interacciones se consideraba que queda igual. Pero lo que hemos visto de manera experimental es que el resto de interacciones entre especies también cambian de manera no predecible”.
Y es que “los abejorros tienen que irse a comer a otra especie, por ejemplo, a las flores del haba, y expulsan de allí a abejas más pequeñas por ser más débiles”. Pero los efectos no tienen que ser negativos siempre, “que las abejas sufran por no poder ir a las flores del haba, puede favorecer a otras especies que compiten con las abejas, ya que las abejas van a reproducirse peor. En definitiva, quitar una interacción desencadena una cascada de cambios en el ecosistema muy difícil de predecir”, como sentencia Godoy.
La importancia de este estudio reside en buena medida en el hecho de que “estamos mezclando diferentes teorías, como la del nicho ecológico y las de las redes de interacción, para estudiar efectos complejos en los ecosistemas. Pero como los números y los modelos matemáticos soportan todo, primero hemos realizado este experimento para que nos diera pistas de cuáles son las limitaciones de los procesos de modelización actual que no tienen en cuenta fenómenos importantes que ocurren en la naturaleza, como las complejas reacciones en cadena observadas”, en palabras de Ignasi Bartomeus.
Una vez llevado a cabo el experimento, los resultados han demostrado lo complejos que son los ecosistemas, ya que “asumir que una pérdida en la naturaleza no tiene efectos secundarios no es acertado porque las especies se relacionan en una compleja red de interacciones, y cambios en esa red percolan por todo su entorno”. Como continúa Bartomeus: “ya había indicios previos de estos resultados, pero aquí, más allá de documentar esos cambios, ponemos de relevancia su importancia para el mantenimiento de la biodiversidad con un experimento detallado”.
Ahora el reto es conseguir comprender y predecir los efectos en cascada “que observamos en ecosistemas naturales con un elevado número de especies, solo así podremos enfrentarnos mejor a revertir los problemas derivados de la extinción de especies. Un pequeño cambio en una única especie puede producir grandes cambios en todo el ecosistema. La analogía con el efecto mariposa es clara. Un pequeño cambio en un sistema, en este caso ecológico, puede dar lugar a grandes cambios a largo plazo. Y lo peor de todo, es que actualmente no somos capaces de predecir los procesos internos que provocan esos cambios, para poder con ello minimizarlos”, según defienden los autores de este trabajo.
Referencia bibliográfica: Ignasi Bartomeus, Serguei Saavedra, Rudolf P. Rohr and Oscar Godoy (2021): ‘Experimental evidence of the importance of multitrophic structure for species persistence’. Proceedings of the National Academy of Sciences (PNAS), 118 (12) e2023872118; DOI: 10.1073/pnas.2023872118
Últimas publicaciones
Los científicos han probado cómo un robot instalado en la residencia 'Vitalia Teatinos' es capaz de adecuar su comportamiento a cada persona y contexto, consiguiendo que éste ande en la sala común de la residencia más de 40 kilómetros con tareas múltiples como recoger las opciones de menú semanal o participar en sesiones de terapia musical. La investigación se ha desarrollado en el marco del proyecto CAMPERO.
Sigue leyendoEl trabajo del Puente del Hacho, situado en la provincia de Granada y atribuido a la escuela de Eiffel, ha sido realizado por los grupos de investigación ‘Tecnologías Avanzadas en Ingeniería Civil: Construcción y Transporte Terrestre’ e ‘Informática Gráfica y Geomática’ de la Universidad de Jaén. Ha contado además con la participación de alumnado de 4º Curso del Grado de Ingeniería Civil de la Escuela Politécnica Superior de Linares.
Sigue leyendoUn novedoso modelo desarrollado por la Universidad de Córdoba usa redes neuronales para optimizar la decodificación de los marcadores que usan las máquinas para detectar y conocer la ubicación de los objetos. Tanto los datos generados de manera artificial para entrenar el modelo como los de situaciones de iluminación desfavorable en el mundo real están disponibles en abierto, así el sistema podría aplicarse en la actualidad.
Sigue leyendo